Publications by authors named "Sara Carlert"

Background: Pharmaceutical salts of poorly soluble drugs typically dissolve faster than their corresponding free acid or base, resulting in supersaturation under some circumstances. The key questions relevant to drug bioavailability "does the salt invoke the supersaturated state?" and, if so, "does precipitation occur?" remain. To answer these questions, different types of dissolution equipment are often used at different stages of the development process.

View Article and Find Full Text PDF

Due to the strong tendency towards poorly soluble drugs in modern development pipelines, enabling drug formulations such as amorphous solid dispersions, cyclodextrins, co-crystals and lipid-based formulations are frequently applied to solubilize or generate supersaturation in gastrointestinal fluids, thus enhancing oral drug absorption. Although many innovative in vitro and in silico tools have been introduced in recent years to aid development of enabling formulations, significant knowledge gaps still exist with respect to how best to implement them. As a result, the development strategy for enabling formulations varies considerably within the industry and many elements of empiricism remain.

View Article and Find Full Text PDF

Oral drug absorption is a complex process depending on many factors, including the physicochemical properties of the drug, formulation characteristics and their interplay with gastrointestinal physiology and biology. Physiological-based pharmacokinetic (PBPK) models integrate all available information on gastro-intestinal system with drug and formulation data to predict oral drug absorption. The latter together with in vitro-in vivo extrapolation and other preclinical data on drug disposition can be used to predict plasma concentration-time profiles in silico.

View Article and Find Full Text PDF

Aims: Retinoic acid-related orphan receptor γ (RORγ), a master regulator of T-helper 17 (Th17) cell function and differentiation, is an attractive target for treatment of Th17-driven diseases. This first-in-human study aimed to investigate the pharmacokinetics, pharmacodynamics, safety and tolerability of the inverse RORγ agonist AZD0284.

Methods: We conducted a phase I, randomized, single-blind, placebo-controlled, two-part, first-in-human study with healthy subjects receiving single (4-238 mg) or multiple (12-100 mg) oral doses of AZD0284 or placebo after overnight fasting.

View Article and Find Full Text PDF

The high number of poorly water-soluble compounds in drug development has increased the need for enabling formulations to improve oral bioavailability. One frequently applied approach is to induce supersaturation at the absorptive site, e.g.

View Article and Find Full Text PDF

Orally administered drugs are subject to a number of barriers impacting bioavailability (F), causing challenges during drug and formulation development. Physiologically-based pharmacokinetic (PBPK) modelling can help during drug and formulation development by providing quantitative predictions through a systems approach. The performance of three available PBPK software packages (GI-Sim, Simcyp®, and GastroPlus™) were evaluated by comparing simulated and observed pharmacokinetic (PK) parameters.

View Article and Find Full Text PDF
Article Synopsis
  • - Three Physiologically Based Pharmacokinetic (PBPK) software packages (GI-Sim, Simcyp®, GastroPlus™) were assessed for predicting human drug absorption as part of the OrBiTo project, revealing issues with bioavailability predictions for various compounds.
  • - The models consistently underestimated oral bioavailability (F) for low-permeability and acidic compounds, indicating potential flaws in understanding intestinal absorption processes and solubility settings.
  • - High logP and poorly water-soluble compounds also had lower than expected bioavailability, pointing to the need for improved solubility models and more accurate input data, but caution was noted due to variability in available data used for predictions.
View Article and Find Full Text PDF

Predicting oral bioavailability (F) is of importance for estimating systemic exposure of orally administered drugs. Physiologically-based pharmacokinetic (PBPK) modelling and simulation have been applied extensively in biopharmaceutics recently. The Oral Biopharmaceutical Tools (OrBiTo) project (Innovative Medicines Initiative) aims to develop and improve upon biopharmaceutical tools, including PBPK absorption models.

View Article and Find Full Text PDF

AZD1175 and AZD2207 are 2 highly lipophilic compounds with a significant risk of not achieving therapeutic plasma concentrations due to solubility-limited absorption. The compounds have the same molecular weight and minimal structural differences. The aim of the present work was to investigate whether salts could be applied to improve the intestinal absorption, and the subsequent in vivo exposure.

View Article and Find Full Text PDF

The aim of this work was to evaluate an in vitro-in silico approach for prediction of small intestinal crystalline precipitation and drug absorption of two weakly basic model BCS class II drugs, AZD0865 and mebendazole. The crystallization rates were investigated in an in vitro method using simulated gastric and intestinal media, and the result was modeled by using Classical Nucleation Theory (CNT). The effect of varying in vitro parameters (initial drug concentration, rate of mixing gastric and intestinal fluid, stirring and filtration) on the interfacial tension γ, being a key parameter in CNT, was investigated.

View Article and Find Full Text PDF

Accurate prediction of the in vivo biopharmaceutical performance of oral drug formulations is critical to efficient drug development. Traditionally, in vitro evaluation of oral drug formulations has focused on disintegration and dissolution testing for quality control (QC) purposes. The connection with in vivo biopharmaceutical performance has often been ignored.

View Article and Find Full Text PDF

The purpose of this study was to investigate in vivo intestinal precipitation of a model drug mebendazole, a basic BCS class II drug, using dogs with intestinal stomas for administration or sampling. After oral administration of a solution with an expected intestinal supersaturation of approximately 20 times the solubility, the measured supersaturation in dog intestinal fluid (DIF) was up to 10 times and, on average, only 11% of the given dose was retrieved as solid drug in the collected fluid from the stoma. The drug was rapidly absorbed with >90% of the total systemic exposure reached within three hours after duodenal administration of a solution.

View Article and Find Full Text PDF

Purpose: To investigate the prediction accuracy of in vitro and in vitro/in silico methods for in vivo intestinal precipitation of basic BCS class II drugs in humans.

Methods: Precipitation rate of a model drug substance, AZD0865 (pKa = 6.1; log K(D) = 4.

View Article and Find Full Text PDF