Aging is a physiological and progressive phenomenon in all organisms' life cycle, characterized by the accumulation of degenerative processes triggered by several alterations within molecular pathways. These changes compromise cell fate, resulting in the loss of functions in tissues throughout the body, including the brain. Physiological brain aging has been linked to structural and functional alterations, as well as to an increased risk of neurodegenerative diseases.
View Article and Find Full Text PDFThe FcγRII (CD32) ligands are IgFc fragments and pentraxins. The existence of additional ligands is unknown. We engineered T cells with human chimeric receptors resulting from the fusion between CD32 extracellular portion and transmembrane CD8α linked to CD28/ζ chain intracellular moiety (CD32-CR).
View Article and Find Full Text PDFEV produced by tumour cells carry a diverse population of proteins, lipids, DNA, and RNA molecules throughout the body and appear to play an important role in the overall development of the disease state, according to growing data. Gliomas account for a sizable fraction of all primary brain tumours and the vast majority of brain malignancies. Glioblastoma multiforme (GBM) is a kind of grade IV glioma that has a very dismal prognosis despite advancements in diagnostic methods and therapeutic options.
View Article and Find Full Text PDFCetuximab and panitumumab bind the human epidermal growth factor receptor (EGFR). Although the chimeric cetuximab (IgG1) triggers antibody-dependent-cellular-cytotoxicity (ADCC) of EGFR positive target cells, panitumumab (a human IgG2) does not. The inability of panitumumab to trigger ADCC reflects the poor binding affinity of human IgG2 Fc for the FcγRIII (CD16) on natural killer (NK) cells.
View Article and Find Full Text PDFKRAS mutations hinder therapeutic efficacy of epidermal growth factor receptor (EGFR)-specific monoclonal antibodies cetuximab and panitumumab-based immunotherapy of EGFR+ cancers. Although cetuximab inhibits KRAS-mutated cancer cell growth in vitro by natural killer (NK) cell-mediated antibody-dependent cellular cytotoxicity (ADCC), KRAS-mutated colorectal carcinoma (CRC) cells escape NK cell immunosurveillance in vivo. To overcome this limitation, we used cetuximab and panitumumab to redirect Fcγ chimeric receptor (CR) T cells against KRAS-mutated HCT116 colorectal cancer (CRC) cells.
View Article and Find Full Text PDFThe chimeric antigen receptor T cell (CAR-T cell) immunotherapy currently represents a hot research trend and it is expected to revolutionize the field of cancer therapy. Promising outcomes have been achieved using CAR-T cell therapy for haematological malignancies. Despite encouraging results, several challenges still pose eminent hurdles before being fully recognized.
View Article and Find Full Text PDFFor many years, disappointing results have been generated by many investigations, which have utilized a variety of immunologic strategies to enhance the ability of a patient's immune system to recognize and eliminate malignant cells. However, in recent years, immunotherapy has been used successfully for the treatment of hematologic and solid malignancies. The impressive clinical responses observed in many types of cancer have convinced even the most skeptical clinical oncologists that a patient's immune system can recognize and reject his tumor if appropriate strategies are implemented.
View Article and Find Full Text PDFAcute myeloid leukemia (AML) cells induce, in vitro, NK cell abnormalities (NKCAs) including apoptosis and activating receptor down-regulation. The potential negative impact of AML cells on the therapeutic efficacy of NK cell-based strategies prompted us to analyze the mechanisms underlying NKCAs and to develop approaches to protect NK cells from NKCAs. NKCA induction by the AML leukemia cells target a subpopulation of peripheral blood NK cells and is interleukin-2 independent but is abrogated by a long-term culture of NK (LTNK) cells at 37°C.
View Article and Find Full Text PDFLiver has a principal role in glucose regulation and lipids homeostasis. It is under a complex control by substrates such as hormones, nutrients, and neuronal impulses. Insulin promotes glycogen synthesis, lipogenesis, and lipoprotein synthesis and inhibits gluconeogenesis, glycogenolysis, and VLDL secretion by modifying the expression and enzymatic activity of specific molecules.
View Article and Find Full Text PDFRecent evidence suggests that natural killer (NK) cells are typically defective in infiltrating solid tumors, with the exception of gastrointestinal stromal tumors (GIST). Interestingly, however, infrequently infiltrating NK cells do not appear to have a direct effect on tumor progression. Here, prompted by the recent evidence that NK cell and T cell crosstalk may trigger, or enhance, tumor antigen-specific immune responses, we have tested the clinical significance of this reciprocal signaling.
View Article and Find Full Text PDFIncreasing evidence suggests that HLA-DRB1 alleles reduce or increase the risk of developing ulcerative colitis-associated colorectal carcinoma (CRC) tumors. However, the role of HLA-DRB1 locus on the susceptibility to develop CRC tumor, in the absence of a history of inflammatory bowel diseases (IBDs), is unclear. The aim of our study was to determine whether HLA-DRB1 alleles are associated with IBD-independent CRC tumor.
View Article and Find Full Text PDFDiabetic hyperglycaemia causes endothelial dysfunction mainly by impairing endothelial nitric oxide (NO) production. Moreover, hyperglycaemia activates several noxious cellular pathways including apoptosis, increase in reactive oxygen species (ROS) levels and diminishing Na(+)-K(+) ATPase activity which exacerbate vascular damage. Serum glucocorticoid kinase (SGK)-1, a member of the serine/threonine kinases, plays a pivotal role in regulating NO production through inducible NO synthase activation and other cellular mechanisms.
View Article and Find Full Text PDFEnhanced oxidative stress contributes to the pathogenesis of diabetes and its complications. Peroxiredoxin 6 (PRDX6) is a key regulator of cellular redox balance, with the peculiar ability to neutralize peroxides, peroxynitrite, and phospholipid hydroperoxides. In the current study, we aimed to define the role of PRDX6 in the pathophysiology of type 2 diabetes (T2D) using PRDX6 knockout (-/-) mice.
View Article and Find Full Text PDFThe goal of this study was to determine the frequency of HLA class II antigen expression in colorectal carcinoma (CRC) tumors, its association with the clinical course of the disease, and the underlying mechanism(s). Two tissue microarrays constructed with 220 and 778 CRC tumors were stained with HLA-DR, DQ, and DP antigen-specific monoclonal antibody LGII-612.14, using the immunoperoxidase staining technique.
View Article and Find Full Text PDF