Background: Complexity and change in health care environments, the rapid pace of knowledge generation, and changing education policy have led to national calls for change in nursing education. Many nursing programs have adopted a concept-based curriculum (CBC) to address these challenges. Yet, much is still uncertain about the outcomes and effectiveness of CBC, which requires large scale, time-consuming, and resource-intensive change.
View Article and Find Full Text PDFAims/hypothesis: Individuals with diabetes are at high risk of cardiovascular complications, which significantly increase morbidity/mortality. Coronary microvascular disease (CMD) is recognised as a critical contributor to the increased cardiac mortality observed in people with diabetes. Therefore, there is an urgent need for treatments that are specific to CMD.
View Article and Find Full Text PDFNecrotizing enterocolitis (NEC) is the most common gastrointestinal emergency of prematurity. Postulated mechanisms leading to inflammatory necrosis of the ileum and colon include activation of the pathogen recognition receptor Toll-like receptor 4 (TLR4) and decreased levels of transforming growth factor beta (TGFβ). Extracellular nicotinamide phosphoribosyltransferase (eNAMPT), a novel damage-associated molecular pattern (DAMP), is a TLR4 ligand and plays a role in a number of inflammatory disease processes.
View Article and Find Full Text PDFObjective: Human and preclinical studies of sulfur mustard (SM)-induced acute and chronic lung injuries highlight the role of unremitting inflammation. We assessed the utility of targeting the novel DAMP and TLR4 ligand, eNAMPT (extracellular nicotinamide phosphoribosyltransferase), utilizing a humanized mAb (ALT-100) in rat models of SM exposure.
Methods: Acute (SM 4.
Background: A limited pool of SNPs are linked to the development and severity of sarcoidosis, a systemic granulomatous inflammatory disease. By integrating genome-wide association studies (GWAS) data and expression quantitative trait loci (eQTL) single nuclear polymorphisms (SNPs), we aimed to identify novel sarcoidosis SNPs potentially influencing the development of complicated sarcoidosis.
Methods: A GWAS (Affymetrix 6.
Myocardial infarction (MI) triggers adverse ventricular remodeling (VR), cardiac fibrosis, and subsequent heart failure. Extracellular nicotinamide phosphoribosyltransferase (eNAMPT) is postulated to play a significant role in VR processing via activation of the TLR4 inflammatory pathway. We hypothesized that an eNAMPT specific monoclonal antibody (mAb) could target and neutralize overexpressed eNAMPT post-MI and attenuate chronic cardiac inflammation and fibrosis.
View Article and Find Full Text PDFBackground And Objectives: eNAMPT (extracellular nicotinamide phosphoribosyltransferase), a novel DAMP and TLR4 ligand, is a druggable ARDS therapeutic target with promoter SNPs associated with ARDS severity. This study assesses the previously unknown influence of promoter SNPs on transcription, eNAMPT secretion, and ARDS severity.
Methods And Design: Human lung endothelial cells (ECs) transfected with promoter luciferase reporters harboring SNPs G-1535A, A-1001 C, and C-948A, were exposed to LPS or LPS/18% cyclic stretch (CS) and promoter activity, NAMPT protein expression, and secretion assessed.
Intra-amniotic inflammation (IAI) or chorioamnionitis is a common complication of pregnancy producing significant maternal morbidity/mortality, premature birth and neonatal risk of chronic lung diseases such as bronchopulmonary dysplasia (BPD). We examined eNAMPT (extracellular nicotinamide phosphoribosyltransferase), a critical inflammatory DAMP and TLR4 ligand, as a potential therapeutic target to reduce IAI severity and improve adverse fetal/neonatal outcomes. Blood/tissue samples were examined in: 1) women with histologically-proven chorioamnionitis, 2) very low birth weight (VLBW) neonates, and 3) a preclinical murine pregnancy model of IAI.
View Article and Find Full Text PDFWe previously identified a missense single nucleotide polymorphism rs2228315 (G>A, Met62Ile) in the selectin-P-ligand gene (), encoding P-selectin glycoprotein ligand 1 (PSGL-1), to be associated with increased susceptibility to acute respiratory distress syndrome (ARDS). These earlier studies demonstrated that lung tissue expression was increased in mice exposed to lipopolysaccharide (LPS)- and ventilator-induced lung injury (VILI) suggesting that inflammatory and epigenetic factors regulate promoter activity and transcription. In this report, we used a novel recombinant tandem PSGL1 immunoglobulin fusion molecule (TSGL-Ig), a competitive inhibitor of PSGL1/P-selectin interactions, to demonstrate significant TSGL-Ig-mediated decreases in lung tissue expression as well as highly significant protection from LPS- and VILI-induced lung injury.
View Article and Find Full Text PDFAlthough the progression of non-alcoholic fatty liver disease (NAFLD) from steatosis to steatohepatitis (NASH) and cirrhosis remains poorly understood, a critical role for dysregulated innate immunity has emerged. We examined the utility of ALT-100, a monoclonal antibody (mAb), in reducing NAFLD severity and progression to NASH/hepatic fibrosis. ALT-100 neutralizes eNAMPT (extracellular nicotinamide phosphoribosyltransferase), a novel damage-associated molecular pattern protein (DAMP) and Toll-like receptor 4 (TLR4) ligand.
View Article and Find Full Text PDFRationale: Effective therapies to reduce the severity and high mortality of pulmonary vasculitis and diffuse alveolar hemorrhage (DAH) in patients with systemic lupus erythematosus (SLE) is a serious unmet need. We explored whether biologic neutralization of eNAMPT (extracellular nicotinamide phosphoribosyl-transferase), a novel DAMP and Toll-like receptor 4 ligand, represents a viable therapeutic strategy in lupus vasculitis.
Methods: Serum was collected from SLE subjects (n = 37) for eNAMPT protein measurements.
Background: Progressive pulmonary fibrosis is a serious complication in subjects with sarcoidosis. The absence of reliable, non-invasive biomarkers that detect early progression exacerbates the difficulty in predicting sarcoidosis severity. To potentially address this unmet need, we evaluated a panel of markers for an association with sarcoidosis progression (HBEGF, NAMPT, IL1-RA, IL-6, IL-8, ANG-2).
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
December 2022
Background/aims: Increase in vascular permeability is a cardinal feature of all inflammatory diseases and represents an imbalance in vascular contractile forces and barrier-restorative forces, both of which are highly dependent on actin cytoskeletal dynamics. In addition to the involvement of key vascular barrier-regulatory, actin-binding proteins, such as nmMLCK and cortactin, we recently demonstrated a role for a member of the Ena-VASP family known as Ena-VASP-like (EVL) in promoting vascular focal adhesion (FA) remodeling and endothelial cell (EC) barrier restoration/preservation.
Methods: To further understand the role of EVL in EC barrier-regulatory processes, we examined EVL-cytoskeletal protein interactions in FA dynamics in vitro utilizing lung EC and in vivo murine models of acute inflammatory lung injury.
Numerous potential ARDS therapeutics, based upon preclinical successful rodent studies that utilized LPS challenge without mechanical ventilation, have failed in Phase 2/3 clinical trials. Recently, ALT-100 mAb, a novel biologic that neutralizes the TLR4 ligand and DAMP, eNAMPT (extracellular nicotinamide phosphoribosyltransferase), was shown to reduce septic shock/VILI-induced porcine lung injury when delivered 2 h after injury onset. We now examine the ALT-100 mAb efficacy on acute kidney injury (AKI) and lung fluid balance in a porcine ARDS/VILI model when delivered 6 h post injury.
View Article and Find Full Text PDFBackground: Nicotinamide phosphoribosyltransferase (NAMPT) exhibits dual functionality - as an intracellular enzyme regulating nicotinamide adenine dinucleotide metabolism and as an extracellular secreted protein (eNAMPT) to function as a cytokine regulator of innate immunity via binding to Toll-Like receptor 4 and NF-κB activation. In limited preclinical and clinical studies, eNAMPT was implicated in the pathobiology of acute respiratory distress syndrome (ARDS) suggesting that eNAMPT could potentially serve as a diagnostic and prognostic biomarker. We investigated the feasibility of circulating eNAMPT levels to serve as a biomarker in an expanded cohort of patients with ARDS and ARDS-predisposing conditions that included acute pancreatitis, sepsis, and trauma with comparisons to controls.
View Article and Find Full Text PDFGlobal knockout of the nonmuscle isoform of myosin light-chain kinase (nmMLCK), a primary cellular regulator of cytoskeletal machinery, is strongly protective in preclinical murine models of inflammatory lung injury. The current study was designed to assess the specific contribution of endothelial cell (EC) nmMLCK to the severity of murine inflammatory lung injury produced by lipopolysaccharide (LPS) and mechanical ventilation ventilator-induced lung injury or ventilation (VILI). Responses to combined LPS/VILI exposure were assessed in: (i) wild-type (WT) C57BL/6J mice; (ii) transgenic mice with global deletion of nmMLCK ( ); (iii) transgenic nm mice with overexpression of nmMLCK restricted to the endothelium ( ).
View Article and Find Full Text PDFWe previously reported integrin beta 4 (ITGB4) is an important mediator of lung vascular protection by simvastatin, a 3-hydroxy-3-methylglutaryl-coenzyme A-reductase inhibitor. In this study, we report increased endothelial cell (EC) expression specifically of ITGB4E, an ITGB4 mRNA splice variant, by simvastatin with effects on EC protein expression and inflammatory responses. In initial experiments, human pulmonary artery ECs were treated using simvastatin (5 μM, 24 h) prior to immunoprecipitation of integrin alpha 6 (ITGA6), which associates with ITGB4, and Western blotting for full-length ITGB4 and ITGB4E, uniquely characterized by a truncated 114 amino acid cytoplasmic domain.
View Article and Find Full Text PDFThe cortactin gene (CTTN), encoding an actin-binding protein critically involved in cytoskeletal dynamics and endothelial cell (EC) barrier integrity, contains single nucleotide polymorphisms (SNPs) associated with severe asthma in Black patients. As loss of lung EC integrity is a major driver of mortality in the Acute Respiratory Distress Syndrome (ARDS), sepsis, and the acute chest syndrome (ACS), we speculated CTTN SNPs that alter EC barrier function will associate with clinical outcomes from these types of conditions in Black patients. In case-control studies, evaluation of a nonsynonymous CTTN coding SNP Ser484Asn (rs56162978, G/A) in a severe sepsis cohort (725 Black subjects) revealed significant association with increased risk of sepsis mortality.
View Article and Find Full Text PDFThe paucity of therapeutic strategies to reduce the severity of radiation-induced lung fibrosis (RILF), a life-threatening complication of intended or accidental ionizing radiation exposure, is a serious unmet need. We evaluated the contribution of eNAMPT (extracellular nicotinamide phosphoribosyltransferase), a damage-associated molecular pattern (DAMP) protein and TLR4 (Toll-like receptor 4) ligand, to the severity of whole-thorax lung irradiation (WTLI)-induced RILF. Wild-type (WT) and heterozygous C57BL6 mice and nonhuman primates (NHPs, ) were exposed to a single WTLI dose (9.
View Article and Find Full Text PDFDespite encouraging preclinical data, therapies to reduce ARDS mortality remains a globally unmet need, including during the COVID-19 pandemic. We previously identified extracellular nicotinamide phosphoribosyltransferase (eNAMPT) as a novel damage-associated molecular pattern protein (DAMP) via TLR4 ligation which regulates inflammatory cascade activation. eNAMPT is tightly linked to human ARDS by biomarker and genotyping studies in ARDS subjects.
View Article and Find Full Text PDFProstate cancer (PCa) is the major cause of cancer-related death in males; however, effective treatments to prevent aggressive progression remain an unmet need. We have previously demonstrated that secreted extracellular nicotinamide phosphoribosyltransferase (eNAMPT) is a multifunctional innate immunity regulator that promotes PCa invasion. In the current study, we further investigate the therapeutic effects of an eNAMPT-neutralizing humanized monoclonal antibody (ALT-100 mAb) in preclinical PCa orthotopic xenograft models.
View Article and Find Full Text PDFPharmacologic interventions to halt/reverse the vascular remodeling and right ventricular dysfunction in pulmonary arterial hypertension (PAH) remains an unmet need. We previously demonstrated extracellular nicotinamide phosphoribosyltransferase (eNAMPT) as a DAMP (damage-associated molecular pattern protein) contributing to PAH pathobiology via TLR4 ligation. We examined the role of endothelial cell (EC)-specific eNAMPT in experimental PH and an eNAMPT-neutralizing mAb as a therapeutic strategy to reverse established PH.
View Article and Find Full Text PDFIncreases in lung vascular permeability is a cardinal feature of inflammatory disease and represents an imbalance in vascular contractile forces and barrier-restorative forces, with both forces highly dependent upon the actin cytoskeleton. The current study investigates the role of Ena-VASP-like (EVL), a member of the Ena-VASP family known to regulate the actin cytoskeleton, in regulating vascular permeability responses and lung endothelial cell barrier integrity. Utilizing changes in transendothelial electricial resistance (TEER) to measure endothelial cell barrier responses, we demonstrate that EVL expression regulates endothelial cell responses to both sphingosine-1-phospate (S1P), a vascular barrier-enhancing agonist, and to thrombin, a barrier-disrupting stimulus.
View Article and Find Full Text PDF