Publications by authors named "Sara C Buch-Larsen"

ADP-ribosylation (ADPr) signaling plays a crucial role in DNA damage response. Inhibitors against the main enzyme catalyzing ADPr after DNA damage, poly(ADP-ribose) polymerase 1 (PARP1), are used to treat patients with breast cancer harboring BRCA1/2 mutations. However, resistance to PARP inhibitors (PARPi) is a major obstacle in treating patients.

View Article and Find Full Text PDF

Despite the importance of citrullination in physiology and disease, global identification of citrullinated proteins, and the precise targeted sites, has remained challenging. Here we employed quantitative-mass-spectrometry-based proteomics to generate a comprehensive atlas of citrullination sites within the HL60 leukemia cell line following differentiation into neutrophil-like cells. We identified 14,056 citrullination sites within 4,008 proteins and quantified their regulation upon inhibition of the citrullinating enzyme PADI4.

View Article and Find Full Text PDF
Article Synopsis
  • PARPs (PARP1 and PARP2) play a crucial role in repair mechanisms for damaged DNA, specifically in Rad52-dependent replication fork repair when homologous recombination fails.
  • Mre11 and ATM proteins activate PARP in response to replication stress, which facilitates break-induced replication (BIR) by recruiting Rad52 to damaged sites.
  • The study highlights that PolD3 is specifically ADP-ribosylated by PARP1/PARP2 during replication stress, and this modification is essential for maintaining genome stability and recovery of replication forks.
View Article and Find Full Text PDF

In the mammalian DNA damage response, ADP-ribosylation signalling is of crucial importance to mark sites of DNA damage as well as recruit and regulate repairs factors. Specifically, the PARP1:HPF1 complex recognises damaged DNA and catalyses the formation of serine-linked ADP-ribosylation marks (mono-Ser-ADPr), which are extended into ADP-ribose polymers (poly-Ser-ADPr) by PARP1 alone. Poly-Ser-ADPr is reversed by PARG, while the terminal mono-Ser-ADPr is removed by ARH3.

View Article and Find Full Text PDF

ADP-ribosylation is a posttranslational modification (PTM) that has crucial functions in a wide range of cellular processes. Although mass spectrometry (MS) in recent years has emerged as a valuable tool for profiling ADP-ribosylation on a system level, the use of conventional MS methods to profile ADP-ribosylation sites in an unbiased way remains a challenge. Here, we describe a protocol for identification of ADP-ribosylated proteins in vivo on a proteome-wide level, and localization of the amino acid side chains modified with this PTM.

View Article and Find Full Text PDF

The DNA damage response revolves around transmission of information via post-translational modifications, including reversible protein ADP-ribosylation. Here, we applied a mass-spectrometry-based Af1521 enrichment technology for the identification and quantification of ADP-ribosylation sites as a function of various DNA damage stimuli and time. In total, we detected 1681 ADP-ribosylation sites residing on 716 proteins in U2OS cells and determined their temporal dynamics after exposure to the genotoxins HO and MMS.

View Article and Find Full Text PDF
Article Synopsis
  • PSD-95 is an important protein in neurons that helps organize signaling structures, and its function is influenced by phosphorylation, although studying this has been challenging.
  • Researchers introduced specific phosphorylation sites on PSD-95 and created 11 different variants to analyze how these changes affected its interactions and the formation of protein complexes.
  • They discovered that phosphorylation at Ser78 reduced phase separation with GluN2B and stargazin, while phosphorylation at Ser116 promoted phase separation with stargazin, offering new insights into how PSD-95 is regulated and how it interacts within the postsynaptic density.
View Article and Find Full Text PDF

Despite the involvement of Poly(ADP-ribose) polymerase-1 (PARP1) in many important biological pathways, the target residues of PARP1-mediated ADP-ribosylation remain ambiguous. To explicate the ADP-ribosylation regulome, we analyze human cells depleted for key regulators of PARP1 activity, histone PARylation factor 1 (HPF1) and ADP-ribosylhydrolase 3 (ARH3). Using quantitative proteomics, we characterize 1,596 ADP-ribosylation sites, displaying up to 1000-fold regulation across the investigated knockout cells.

View Article and Find Full Text PDF

Poly(ADP-ribose) polymerase 7 (PARP-7) has emerged as a critically important member of a large enzyme family that catalyzes ADP-ribosylation in mammalian cells. PARP-7 is a critical regulator of the innate immune response. What remains unclear is the mechanism by which PARP-7 regulates this process, namely because the protein targets of PARP-7 mono-ADP-ribosylation (MARylation) are largely unknown.

View Article and Find Full Text PDF

ADP-ribosylation (ADPr) is a post-translational modification that plays pivotal roles in a wide range of cellular processes. Mass spectrometry (MS)-based analysis of ADPr under physiological conditions, without relying on genetic or chemical perturbation, has been hindered by technical limitations. Here, we describe the applicability of activated ion electron transfer dissociation (AI-ETD) for MS-based proteomics analysis of physiological ADPr using our unbiased Af1521 enrichment strategy.

View Article and Find Full Text PDF