Publications by authors named "Sara Bom"

Article Synopsis
  • 3D printing is revolutionizing how topical and transdermal medicine is manufactured, particularly through Vat-based photopolymerization (VP) technologies known for their efficiency and versatility.
  • Despite the advantages, the adoption of VP 3D printing in pharmaceuticals is limited by a shortage of biocompatible materials specifically suitable for these applications.
  • The article reviews the printing process, available commercial materials, lab-made resins, and recent studies, emphasizing the potential future developments in multi-material printing for personalized healthcare solutions.
View Article and Find Full Text PDF

Cell-free based therapies, for example, the use of the cell secretome, have emerged as a promising alternative to conventional skin therapies using bioactive and, when combined with 3D printing technologies, allow the development of personalized dosage forms. This research work aimed to develop gelatin-based patches with controlled network topology via extrusion 3D printing, loaded with cell culture medium as a model of the secretome, and applicable as vehicles for topical delivery. Inks were optimized through rheological and printing assays, and the incorporation of medium had minor effects in printability.

View Article and Find Full Text PDF

Development of multifunctional 3D patches with appropriate antibacterial and biocompatible properties is needed to deal with wound care regeneration. Combining gelatin-based hydrogel with a well-known natural antibacterial honey (Manuka honey, MH) in a 3D patch can provide improved printability and at the same time provide favourable biological effects that may be useful in regenerative wound treatment. In this study, an antibacterial Manuka-Gelatin 3D patches was developed by an extrusion-based printing process, with controlled porosity, high shape fidelity, and structural stability.

View Article and Find Full Text PDF

One of the exciting future directions in the 3D printing field is the development of innovative personalized smart constructions for bio-applications, including drug delivery, namely high-throughput drug screening and customized topical/oral administration of pharmaceuticals, as well as tissue engineering. In this context, hydrogels have emerged as a promising material that, when combined with extrusion 3D printing, allow the creation of soft-material structures with defined spatial locations, that can be printed at room temperature and customized by tuning the geometric design and/or the formulation components. Thus, the efficacy and quality of such vehicles is dependent on formulation, design, and printing process parameters.

View Article and Find Full Text PDF

The incorporation of 3D printing technologies in the pharmaceutical industry can revolutionize its R&D, by providing a simple and rapid method to produce tailored one-off batches, each with customized dosages, different compounds, shapes, sizes, and adjusted release rates. Particularly, this type of technology can be advantageous for the development of topical and transdermal drug delivery systems, including patches and microneedles. The use of both systems as drug carriers offers advantages over the oral administration, but the possibility of skin irritation and sensitization, and the high production costs, may hinder the expansion of this market.

View Article and Find Full Text PDF

Spreadability is one of the most important physicochemical properties of cosmetic products, according to the consumer. Thus, it is fundamental to develop strategies with the aim to improve the knowledge and predict the behavior of alternatives to synthetic emollients. The main goal of this research article was to correlate different physicochemical attributes, namely spreading value, apparent viscosity, density, saponification value, iodine value, peroxide value, acid value and melting range, with the spreading behavior of sustainable alternatives for petrolatum and dimethicone.

View Article and Find Full Text PDF

With the increasing debate on sustainability, there is a strong market trend to formulate more sustainable products for topical application. Several studies emphasize the potential applications of natural, organic, or green chemistry-derived ingredients, but comparative studies between conventional ingredients and sustainable alternatives are lacking. This type of study is considered an excellent baseline and time-saving strategy for future studies.

View Article and Find Full Text PDF

The development of printable hydrogel inks for extrusion-based 3D printing is opening new possibilities to the production of new and/or improved pharmaceutical forms, specifically for topical application. Alginate and starch are natural polysaccharides that have been extensively exploited due to their biocompatibility, biodegradability, viscosity properties, low toxicity, and relatively low cost. This research work aimed to study the physicochemical and release kinetic effects of starch incorporation in alginate-based 3D hydrogel patches for topical delivery using a quality by design approach.

View Article and Find Full Text PDF