The non-covalent modification of carbon nanotube electrodes with pyrene derivatives is a versatile approach to enhance the electrical wiring of enzymes for biosensors and biofuel cells. We report here a comparative study of five pyrene derivatives adsorbed at multi-walled carbon nanotube electrodes to shed light on their ability to promote direct electron transfer with horseradish peroxidase (HRP) for HO reduction. In all cases, pyrene-modified electrodes enhanced catalytic reduction compared to the unmodified electrodes.
View Article and Find Full Text PDFThis paper reports the fabrication and utility of a new solid sensor, which allows the quantitation of silver ions acting as catalyst at the low micromolar level. The optical sensor was prepared by incorporating both reagents, pyrogallol red (PGR) and 1,10-phenanthroline (Phen), in a nylon membrane. The effect of parameters in determining silver-catalyzed oxidation of PGR by persulfate in the presence of Phen as an activator was studied and optimized for achieving suitable sensitivity.
View Article and Find Full Text PDFHerein, we reported a chemiluminescent biosensor based on the covalent immobilization of the horseradish peroxidase (HRP) enzyme on a polydimethylsiloxane (PDMS) support to quantify in situ hydrogen peroxide (HO). The chemiluminescent reaction based on the use of luminol as an oxidizable substrate, with HRP as the catalyst, has been used in order to quantify HO as the oxidizing agent. The performance of the proposed biosensor has been demonstrated to determine HO liberated by cells in a culture medium and for evaluating the delivery of HO from denture cleaner tablets, as examples of application.
View Article and Find Full Text PDFNowadays, interest in using environmentally friendly materials is increasing in many fields. However, the rational design of sensors with biodegradable materials is a challenge. The main aim of this work is to show the possibility of using zein, a protein from corn, as a biodegradable and low-cost material for immobilizing, stabilizing, and delivering different kind of reagents for developing optical sensors.
View Article and Find Full Text PDF