The mRNA 5'cap-binding eukaryotic translation initiation factor 4E (eIF4E) plays a critical role in the control of mRNA translation in health and disease. One mechanism of regulation of eIF4E activity is via phosphorylation of eIF4E by MNK kinases, which promotes the translation of a subset of mRNAs encoding pro-tumorigenic proteins. Work on eIF4E phosphatases has been paltry.
View Article and Find Full Text PDFIntroduction: Impaired brain protein synthesis, synaptic plasticity, and memory are major hallmarks of Alzheimer's disease (AD). The ketamine metabolite (2R,6R)-hydroxynorketamine (HNK) has been shown to modulate protein synthesis, but its effects on memory in AD models remain elusive.
Methods: We investigated the effects of HNK on hippocampal protein synthesis, long-term potentiation (LTP), and memory in AD mouse models.
Reactive oxygen species (ROS) are a contributing factor to impaired function and pathology after spinal cord injury (SCI). The NADPH oxidase (NOX) enzyme is a key source of ROS; there are several NOX family members, including NOX2 and NOX4, that may play a role in ROS production after SCI. Previously, we showed that a temporary inhibition of NOX2 by intrathecal administration of gp91ds-tat immediately after injury improved recovery in a mouse SCI model.
View Article and Find Full Text PDFGenetic perturbances in translational regulation result in defects in cerebellar motor learning; however, little is known about the role of translational mechanisms in the regulation of cerebellar plasticity. We show that genetic removal of 4E-BP, a translational suppressor and target of mammalian target of rapamycin complex 1, results in a striking change in cerebellar synaptic plasticity. We find that cerebellar long-term depression (LTD) at parallel fiber-Purkinje cell synapses is converted to long-term potentiation in 4E-BP knockout mice.
View Article and Find Full Text PDFEffective pharmacotherapy for major depressive disorder remains a major challenge, as more than 30% of patients are resistant to the first line of treatment (selective serotonin reuptake inhibitors). Sub-anaesthetic doses of ketamine, a non-competitive N-methyl-D-aspartate receptor antagonist, provide rapid and long-lasting antidepressant effects in these patients, but the molecular mechanism of these effects remains unclear. Ketamine has been proposed to exert its antidepressant effects through its metabolite (2R,6R)-hydroxynorketamine ((2R,6R)-HNK).
View Article and Find Full Text PDFPolymers (Basel)
September 2020
Interest in the electrical properties of the interface between soft (or polymer-grafted) nanoparticles and solutions is considerable. Of particular significance is the case of polyelectrolyte-coated particles, mainly taking into account that the layer-by-layer procedure allows the control of the thickness and permeability of the layer, and the overall charge of the coated particle. Like in simpler systems, electrokinetic determinations in AC fields (including dielectric dispersion in the 1 kHz-1 MHz frequency range and dynamic electrophoresis by electroacoustic methods in the 1-18 MHz range) provide a large amount of information about the physics of the interface.
View Article and Find Full Text PDFBackground: Excessive iron contributes to oxidative stress after central nervous system injury. NADPH oxidase (NOX) enzymes are upregulated in microglia after pro-inflammatory activation and contribute to oxidative stress. The relationship between iron, microglia, NOX, and oxidative stress is currently unclear.
View Article and Find Full Text PDFAging results in increased activation of inflammatory glial cells and decreased neuronal viability following spinal cord injury (SCI). Metabolism and transport of glucose is also decreased with age, although the influence of age on glucose transporter (GLUT) expression or glucose uptake in SCI is currently unknown. We therefore performed [F]Fluorodeoxyglucose (FDG) PET imaging of young (3 month) and middle-aged (12 month) rats.
View Article and Find Full Text PDFMicroglia are the macrophages of the central nervous system (CNS), which function to monitor and maintain homeostasis. Microglial activation occurs after CNS injury, infection or disease. Prolonged microglial activation is detrimental to the CNS as they produce nitric oxide (NO), reactive oxygen species (ROS) and pro-inflammatory cytokines, resulting in neuronal cell dysfunction and death.
View Article and Find Full Text PDFSpinal cord injury (SCI) results in both acute and chronic inflammation, as a result of activation of microglia, invasion of macrophages and activation of the NADPH oxidase (NOX) enzyme. The NOX enzyme is a primary source of reactive oxygen species (ROS) and is expressed by microglia and macrophages after SCI. These cells can assume either a pro- (M1) or anti-inflammatory (M2) polarization phenotype and contribute to tissue response to SCI.
View Article and Find Full Text PDFNon-invasive measurements of brain metabolism using F-fluorodeoxyglucose (FDG) with positron emission tomography (PET) may provide important information about injury severity following traumatic brain injury (TBI). There is growing interest in the potential of combining functional PET imaging with anatomical and functional magnetic resonance imaging (MRI). This study aimed to investigate the effectiveness of combining clinically available FDG-PET with T2 and diffusion MR imaging, with a particular focus on inflammation and the influence of glial alterations after injury.
View Article and Find Full Text PDFRepeated mild traumatic brain injury (rmTBI) results in worsened outcomes, compared with a single injury, but the mechanism of this phenomenon is unclear. We have previously shown that mild TBI in a rat lateral fluid percussion model results in globally depressed glucose uptake, with a peak depression at 24 h that resolves by 16 days post-injury. The current study investigated the outcomes of a repeat injury conducted at various times during this period of depressed glucose uptake.
View Article and Find Full Text PDFBackground: Spinal cord injury (SCI) results in the activation of the NADPH oxidase (NOX) enzyme, inducing production of reactive oxygen species (ROS). We hypothesized that the NOX2 isoform plays an integral role in post-SCI inflammation and functional deficits.
Methods: Moderate spinal cord contusion injury was performed in adult male mice, and flow cytometry, western blot, and immunohistochemistry were used to assess NOX2 activity and expression, inflammation, and M1/M2 microglia/macrophage polarization from 1 to 28 days after injury.