Publications by authors named "Sara Beese-Sims"

Chromosome movements and licensing of synapsis must be tightly regulated during early meiosis to ensure accurate chromosome segregation and avoid aneuploidy, although how these steps are coordinated is not fully understood. Here we show that GRAS-1, the worm homolog of mammalian GRASP/Tamalin and CYTIP, coordinates early meiotic events with cytoskeletal forces outside the nucleus. GRAS-1 localizes close to the nuclear envelope (NE) in early prophase I and interacts with NE and cytoskeleton proteins.

View Article and Find Full Text PDF

Histone methylation is dynamically regulated to shape the epigenome and adjust central nuclear processes including transcription, cell cycle control and DNA repair. Lysine-specific histone demethylase 2 (LSD2) has been implicated in multiple types of human cancers. However, its functions remain poorly understood.

View Article and Find Full Text PDF

The histone demethylase LSD1 was originally discovered by removing methyl groups from di- and monomethylated histone H3 lysine 4 (H3K4me2/1). Several studies suggest that LSD1 plays roles in meiosis as well as in the epigenetic regulation of fertility given that, in its absence, there is evidence of a progressive accumulation of H3K4me2 and increased sterility through generations. In addition to the progressive sterility phenotype observed in the mutants, growing evidence for the importance of histone methylation in the regulation of DNA damage repair has attracted more attention to the field in recent years.

View Article and Find Full Text PDF

How epigenetic information is transmitted from generation to generation remains largely unknown. Deletion of the C. elegans histone H3 lysine 4 dimethyl (H3K4me2) demethylase spr-5 leads to inherited accumulation of the euchromatic H3K4me2 mark and progressive decline in fertility.

View Article and Find Full Text PDF

The aquaglyceroprin Fps1 is responsible for glycerol transport in yeast in response to changes in extracellular osmolarity. Control of Fps1 channel activity in response to hyperosmotic shock involves a redundant pair of regulators, Rgc1 (regulator of the glycerol channel 1) and Rgc2, and the MAPK Hog1 (high-osmolarity glycerol response 1). However, the mechanism by which these factors influence channel activity is unknown.

View Article and Find Full Text PDF

Many fungal species use glycerol as a compatible solute with which to maintain osmotic homeostasis in response to changes in external osmolarity. In Saccharomyces cerevisiae, intracellular glycerol concentrations are regulated largely by the high osmolarity glycerol (HOG) response pathway, both through induction of glycerol biosynthesis and control of its flux through the plasma membrane Fps1 glycerol channel. The channel activity of Fps1 is also controlled by a pair of positive regulators, Rgc1 and Rgc2.

View Article and Find Full Text PDF

The Saccharomyces cerevisiae Fps1 glycerol channel is a member of the major intrinsic protein (MIP) family of plasma membrane channel proteins that functions in osmoregulatory pathways to transport glycerol passively out of the cell. The MIP family is subdivided into members that are selectively permeable to water (aquaporins) and those permeated by glycerol (aquaglyceroporins or glycerol facilitators). Although aquaporins function as homo-tetramers with each monomer possessing its own channel, previous studies have suggested that aquaglyceroporins may function as monomers.

View Article and Find Full Text PDF

Regulation of histone methylation levels has long been implicated in multiple cellular processes, many of which involve transcription. Here, however, we report a unique role for the Caenorhabditis elegans histone demethylase SPR-5 in meiotic DNA double-strand break repair (DSBR). SPR-5 shows enzymatic activity toward H3K4me2 both in vitro and in the nematode germline, and spr-5 mutants show several phenotypes indicating a perturbation of DSBR, including increased p53-dependent germ cell apoptosis, increased levels of the DSBR marker RAD-51, and sensitivity toward DSB-inducing treatments.

View Article and Find Full Text PDF