Publications by authors named "Sara Azari"

In this study, solvent exchange method was applied as a post-casting solvent treatment to tune the porosity and improve the performance of cellulose acetate/cellulose triacetate forward osmosis (CA/CTA FO) membrane. Ethanol and n-hexane were both used for this treatment as the first and second solvent, respectively. Pristine and treated CA/CTA FO membranes with different thicknesses were characterized using FESEM and adsorption/desorption analysis and also evaluated in terms of the intrinsic transport properties and structural parameter, and performance.

View Article and Find Full Text PDF

Arsenic (As) is the world's most hazardous chemical found in drinking water of many countries; therefore, there is an urgent need for the development of low-cost adsorbents for its removal. Here, we report a highly versatile and synthetic route for the preparation of a three-dimensional (3D) graphene-iron oxide nanoparticle aerogel composite for the efficient removal of As from contaminated water. This unique three-dimensional (3D) interconnected network was prepared from natural graphite rocks with a simple reaction, without the use of harsh chemicals, which combines with the exfoliation of graphene oxide (GO) sheets via the reduction of ferrous ion to form a graphene aerogel composite decorated with iron oxide nanoparticles.

View Article and Find Full Text PDF

A simple synthetic approach for the preparation of graphene-diatom silica composites in the form of self-assembled aerogels with three-dimensional networks from natural graphite and diatomite rocks is demonstrated for the first time. Their adsorption performance for the removal of mercury from water was studied as a function of contact time, solution pH, and mercury concentration to optimize the reaction conditions. The adsorption isotherm of mercury fitted well with the Langmuir model, representing a very high adsorption capacity of >500 mg of mercury/g of adsorbent.

View Article and Find Full Text PDF

Theoretical predictions of interaction energies for membrane-biopolymer foulant pairs were used to compare the fouling tendencies of a virgin commercial polyamide reverse osmosis (RO) membrane with a amino acid 3-(3,4-dihydroxyphenyl)-l-alanine (l-DOPA) coated RO membrane. Lifshitz-van der Waals (LW) and Lewis acid-base (AB) surface tension components of the membranes were determined based on contact angle results using the van Oss approach. From these values, the LW and AB components of the free energy of adhesion between membrane and foulants were calculated.

View Article and Find Full Text PDF

Piezoelectric composites comprising an active phase of ferroelectric ceramic and a polymer matrix have recently found numerous sensory applications. However, it remains a major challenge to further improve their electromechanical response for advanced applications such as precision control and monitoring systems. We here investigated the incorporation of graphene platelets (GnPs) and multi-walled carbon nanotubes (MWNTs), each with various weight fractions, into PZT (lead zirconate titanate)/epoxy composites to produce three-phase nanocomposites.

View Article and Find Full Text PDF

A major obstacle in the widespread application of microfiltration membranes in the wet separation processes such as wastewater treatment is the decline of permeates flux as a result of fouling. This study reports on the surface modification of cellulose acetate (CA) microfiltration membrane with amino acid L-3,4-dihydroxy-phenylalanine (L-DOPA) to improve fouling resistance of the membrane. The membrane surface was characterised using Fourier transform infrared spectroscopy (FTIR), water contact angle and zeta potential measurement.

View Article and Find Full Text PDF