Stable isotopes (SI) and fatty acid (FA) biomarkers can provide insights regarding trophic pathways and habitats associated with contaminant bioaccumulation. We assessed relationships between SI and FA biomarkers and published data on concentrations of two pesticides [dichlorodiphenyltrichloroethane and degradation products (DDX) and bifenthrin] in juvenile Chinook Salmon (Oncorhynchus tshawytscha) from the Sacramento River and Yolo Bypass floodplain in Northern California near Sacramento. We also conducted SI and FA analyses of zooplankton and macroinvertebrates to determine whether particular trophic pathways and habitats were associated with elevated pesticide concentrations in fish.
View Article and Find Full Text PDFTwo commonly used insecticides, bifenthrin and fipronil, can accumulate in the prey of juvenile Chinook salmon, yet the effects of dietary exposure are not understood. Therefore, to better characterize the effect of a dietary exposure route, juvenile Chinook salmon were fed chironomids dosed with a concentration of 9 or 900 ng/g of bifenthrin, fipronil, or their mixture for 25 days at concentrations previously measured in field-collected samples. Chinook were assessed for maximum swimming performance () using a short-duration constant acceleration test and biochemical responses related to energetic processes (glucose levels) and liver health (aspartate aminotransferase (AST) activity).
View Article and Find Full Text PDFThe Sacramento River watershed, California, provides important rearing and migratory habitat for several species of conservation concern. Studies have suggested significant benefits for juvenile fish rearing in floodplain habitats of the watershed compared to the mainstem Sacramento River. However, the potential for contaminant exposure in each of these two habitats is poorly understood.
View Article and Find Full Text PDFJuvenile Chinook salmon (Oncorhynchus tshawytscha) of the Sacramento River system encounter many anthropogenically-induced stressors while rearing and migrating to the Pacific Ocean. Located in a prominent agricultural region, the watershed serves as a source of notable contaminants including pesticides. Salmon rearing in riverine and floodplain areas are potentially exposed to these compounds via dietary exposure, which can vary based on selected food webs.
View Article and Find Full Text PDFGlobal climate change continues to cause alterations in environmental conditions which can be detrimental to aquatic ecosystem health. The development of pesticide resistance in organisms such as Hyalella azteca can lead to increased susceptibility to environmental change. This research provides a robust assessment of the effects of alterations in salinity on the fitness of H.
View Article and Find Full Text PDF