Publications by authors named "Sara Aloisi"

Temporal regulation of super-enhancer (SE) driven transcription factors (TFs) underlies normal developmental programs. Neuroblastoma (NB) arises from an inability of sympathoadrenal progenitors to exit a self-renewal program and terminally differentiate. To identify SEs driving TF regulators, we use all-trans retinoic acid (ATRA) to induce NB growth arrest and differentiation.

View Article and Find Full Text PDF

Rhabdomyosarcomas (RMS) are pediatric mesenchymal-derived malignancies encompassing PAX3/7-FOXO1 Fusion Positive (FP)-RMS, and Fusion Negative (FN)-RMS with frequent RAS pathway mutations. RMS express the master myogenic transcription factor MYOD that, whilst essential for survival, cannot support differentiation. Here we discover SKP2, an oncogenic E3-ubiquitin ligase, as a critical pro-tumorigenic driver in FN-RMS.

View Article and Find Full Text PDF

Neuroblastoma (NB) is one of the primary causes of death for pediatric malignancies. Given the high heterogeneity in NB's mutation landscape, optimizing individualized therapies is still challenging. In the context of genomic alterations, amplification is the most correlated event with poor outcomes.

View Article and Find Full Text PDF

Neuroblastoma (NB) is a childhood cancer arising from sympatho-adrenal neural crest cells. MYCN amplification is found in half of high-risk NB patients; however, no available therapies directly target MYCN. Using multi-dimensional metabolic profiling in MYCN expression systems and primary patient tumors, we comprehensively characterized the metabolic landscape driven by MYCN in NB.

View Article and Find Full Text PDF

Neuroblastoma (NB) is one of the most frequently occurring neurogenic extracranial solid cancers in childhood and infancy. Over the years, many pieces of evidence suggested that NB development is controlled by gene expression dysregulation. These unleashed programs that outline NB cancer cells make them highly dependent on specific tuning of gene expression, which can act co-operatively to define the differentiation state, cell identity, and specialized functions.

View Article and Find Full Text PDF