This study evaluated the antioxidant and antibacterial properties of methanolic extracts derived from oilseed cakes of (lettuce), (black seed), (rocket), and (linseed). Lettuce methanolic extract showed the highest potential, so it was selected for further investigation. High-performance liquid chromatography (HPLC-DAD) analysis and bioassay-guided fractionation of lettuce seed cake extract led to the isolation of five compounds: 1,3-propanediol-2-amino-1-(3',4'-methylenedioxyphenyl) (), luteolin (), luteolin-7-O--D-glucoside (), apigenin-7-O--D-glucoside (), and -sitosterol 3-O--D-glucoside ().
View Article and Find Full Text PDFIn this study, the allelopathic properties of L. (alfalfa) seedling exudates on the germination of seeds of various species were investigated. The compounds responsible for the allelopathic effects of alfalfa were identified and characterized by employing liquid chromatography ion mobility high-resolution mass spectrometry.
View Article and Find Full Text PDFThe low amount of metabolites isolated from natural products is one of the challenges preventing their biological evaluation. The modulation of biosynthetic pathways by stimulating stress-induced responses in plants was proven to be a valuable tool for diversification of already known natural products. Recently, we reported the dramatic effect of methyl jasmonate (MeJA) on alkaloids distribution.
View Article and Find Full Text PDFWhereas the translocation of allelochemicals between plants is well established, a related general transfer of genuine specialized metabolites has not been considered so far. The elucidation of the so-called "Horizontal Natural Product Transfer" revealed that alkaloids, such as nicotine and pyrrolizidine alkaloids, which are leached out from decomposing alkaloid-containing plants (donor plants), are indeed taken up by the roots of plants growing in the vicinity (acceptor plants). Further studies demonstrated that phenolic compounds, such as coumarins or stilbenes, are also taken up by acceptor plants.
View Article and Find Full Text PDFSubstances which have been leached out from decomposing plant parts or exuded from vital plants (donor plants), are taken up by acceptor plants and subsequently modified. This phenomenon was likewise established for harmala alkaloids. Employing hydroponically grown barley seedlings, it becomes evident that harmaline and harmine are taken up by the roots of the acceptor plants.
View Article and Find Full Text PDFBased on the occurrence of indole alkaloids in so-called "chloroform leaf surface extracts", it was previously deduced that these alkaloids are present in the cuticle at the leaf surface of Catharanthus roseus and Vinca minor. As no symplastic markers were found in these extracts this deduction seemed to be sound. However, since chloroform is known to destroy biomembranes very rapidly, these data have to be judged with scepticism.
View Article and Find Full Text PDFJust recently, the "horizontal natural product transfer" was unveiled: alkaloids, which have been leached out from decomposing alkaloidal donor plants, are taken up by the roots of acceptor plants. In the same manner, many other natural products, such as coumarins or stilbenes, are also taken up from the soil. Recent research outlined that alkaloids are transferred also from a living donor plant to plants growing in their vicinity.
View Article and Find Full Text PDFThis study focuses on the elucidation of the stress-induced reverse changes of major indole alkaloids in Vinca minor, primarily on the postulated conversion of vincamine and vincadifformine to yield 9-methoxyvincamine, minovincine, and minovincinine, respectively. By applying the P450 enzyme inhibitors, naproxen and resveratrol, it was shown that the oxidative reaction involved in the postulated conversion of vincamine and vincadifformine is catalyzed by cytochrome P450 enzymes. In combination with the identification of 9-hydroxyvincamine as a postulated intermediate, this result confirms that the observed stress-induced reverse changes in the alkaloid pattern are caused by modifications of the alkaloids which regularly accumulate in the healthy Vinca minor plants.
View Article and Find Full Text PDFInspired by the recently discovered phenomenon of "horizontal natural product transfer" we investigated the putative uptake of phenolic specialized metabolites. Umbelliferone was chosen for this case study, since this coumarin as well as its derivatives can easily be determined by HPLC analyses. Barley (Hordeum vulgare L.
View Article and Find Full Text PDFWhen plants are exposed to various stress situations, their alkaloid concentration frequently is enhanced. This well-known phenomenon is presumably due to a passively enhanced rate of biosynthesis, caused by greatly elevated concentrations of NADPH in stressed plants. Here, we used Chelidonium majus L.
View Article and Find Full Text PDFAlkaloids extracted from mature Vinca minor leaves were fractionated by preparative HPLC. By means of HRMS and NMR data, the main alkaloids were identified as vincamine, strictamine, 10-hydroxycathofoline, and vincadifformine. Upon treatment with methyl jasmonate (MeJA), the pattern and composition of the indole alkaloids changed extensively.
View Article and Find Full Text PDF