The yeast Saccharomyces cerevisiae has developed specialized mechanisms that enable growth on suboptimal nitrogen sources. Exposure of yeast cells to poor nitrogen sources or treatment with the Tor kinase inhibitor rapamycin elicits activation of Gln3 and transcription of nitrogen catabolite-repressed (NCR) genes whose products function in scavenging and metabolizing nitrogen. Here, we show that mutations in class C and D Vps components, which mediate Golgi-to-endosome vesicle transport, impair nuclear translocation of Gln3, NCR gene activation, and growth in poor nitrogen sources.
View Article and Find Full Text PDFThe Tor kinases regulate responses to nutrients and control cell growth. Unlike most organisms that only contain one Tor protein, Saccharomyces cerevisiae expresses two, Tor1 and Tor2, which are thought to share all of the rapamycin-sensitive functions attributable to Tor signaling. Here we conducted a genetic screen that defined the global TOR1 synthetic fitness or lethal interaction gene network.
View Article and Find Full Text PDFIn the budding yeast Saccharomyces cerevisiae, the Tor and cyclic AMP-protein kinase A (cAMP-PKA) signaling cascades respond to nutrients and regulate coordinately the expression of genes required for cell growth, including ribosomal protein (RP) and stress-responsive (STRE) genes. The inhibition of Tor signaling by rapamycin results in repression of the RP genes and induction of the STRE genes. Mutations that hyperactivate PKA signaling confer resistance to rapamycin and suppress the repression of RP genes imposed by rapamycin.
View Article and Find Full Text PDFThe Tor kinases are the targets of the immunosuppressive drug rapamycin and couple nutrient availability to cell growth. In the budding yeast Saccharomyces cerevisiae, the PP2A-related phosphatase Sit4 together with its regulatory subunit Tap42 mediates several Tor signaling events. Sit4 interacts with other potential regulatory proteins known as the Saps.
View Article and Find Full Text PDF