Publications by authors named "Sara A Knaack"

Legumes establish a symbiotic relationship with nitrogen-fixing rhizobia by developing nodules. Nodules are modified lateral roots that undergo changes in their cellular development in response to bacteria, but the transcriptional reprogramming that occurs in these root cells remains largely uncharacterized. Here, we describe the cell-type-specific transcriptome response of Medicago truncatula roots to rhizobia during early nodule development in the wild-type genotype Jemalong A17, complemented with a hypernodulating mutant (sunn-4) to expand the cell population responding to infection and subsequent biological inferences.

View Article and Find Full Text PDF

The prefrontal cortex (PFC) is critical for myriad high-cognitive functions and is associated with several neuropsychiatric disorders. Here, using Patch-seq and single-nucleus multiomic analyses, we identified genes and regulatory networks governing the maturation of distinct neuronal populations in the PFC of rhesus macaque. We discovered that specific electrophysiological properties exhibited distinct maturational kinetics and identified key genes underlying these properties.

View Article and Find Full Text PDF

Background: Symbiotic associations between bacteria and leguminous plants lead to the formation of root nodules that fix nitrogen needed for sustainable agricultural systems. Symbiosis triggers extensive genome and transcriptome remodeling in the plant, yet an integrated understanding of the extent of chromatin changes and transcriptional networks that functionally regulate gene expression associated with symbiosis remains poorly understood. In particular, analyses of early temporal events driving this symbiosis have only captured correlative relationships between regulators and targets at mRNA level.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on understanding how stem cells in the shoot apex of woody plants like Populus develop into different tissues and organs, specifically examining the lack of a lineage map for these cells.
  • Using single-nuclei RNA-sequencing, researchers identified seven major cell populations and established developmental pathways for various tissues, including epidermis, leaf mesophyll, and vascular tissue.
  • By comparing the vascular development between Populus and the model plant Arabidopsis, the study highlights similarities and differences in cell differentiation processes across species, providing insights for future research on plant biology.
View Article and Find Full Text PDF

Background: Seminal studies of vertebrate protein evolution speculated that gene regulatory changes can drive anatomical innovations. However, very little is known about gene regulatory network (GRN) evolution associated with phenotypic effect across ecologically diverse species. Here we use a novel approach for comparative GRN analysis in vertebrate species to study GRN evolution in representative species of the most striking examples of adaptive radiations, the East African cichlids.

View Article and Find Full Text PDF

Changes in transcriptional regulatory networks can significantly contribute to species evolution and adaptation. However, identification of genome-scale regulatory networks is an open challenge, especially in non-model organisms. Here, we introduce multi-species regulatory network learning (MRTLE), a computational approach that uses phylogenetic structure, sequence-specific motifs, and transcriptomic data, to infer the regulatory networks in different species.

View Article and Find Full Text PDF

Comparative functional genomics aims to measure and compare genome-wide functional data such as transcriptomes, proteomes, and epigenomes across multiple species to study the conservation and divergence patterns of such quantitative measurements. However, computational methods to systematically compare these quantitative genomic profiles across multiple species are in their infancy. We developed Arboretum, a novel algorithm to identify modules of co-expressed genes and trace their evolutionary history across multiple species from a complex phylogeny.

View Article and Find Full Text PDF

Many human diseases including cancer are the result of perturbations to transcriptional regulatory networks that control context-specific expression of genes. A comparative approach across multiple cancer types is a powerful approach to illuminate the common and specific network features of this family of diseases. Recent efforts from The Cancer Genome Atlas (TCGA) have generated large collections of functional genomic data sets for multiple types of cancers.

View Article and Find Full Text PDF