Objective: Rheumatoid arthritis (RA) is a chronic inflammatory condition that, despite available approaches to manage the disease, lacks an efficient treatment and timely diagnosis. Using the most advanced omics technique, metabolomics and proteomics approach, we explored varied metabolites and proteins to identify unique metabolite-protein signatures involved in the disease pathogenesis of RA.
Methods: Untargeted metabolomics (n = 20) and proteomics (n = 60) of RA patients' plasma were carried out by HPLC/LC-MS/MS and SWATH, respectively and analyzed by Metaboanalyst.
Natural coumarins and isocoumarins show significant therapeutic potential against cancer in preclinical studies by targeting multiple pathways and processes. These compounds influence several critical cellular processes, such as apoptosis, autophagy, and cell cycle regulation, which are pivotal in cancer development and progression. Their capability to target multiple signalling pathways provides a strategic advantage over single-target therapies, which are often limited by drug resistance.
View Article and Find Full Text PDFRheumatoid arthritis (RA) is an autoimmune disease characterized by joint inflammation driven by complex signaling pathways. Recent therapeutic approaches focus on small molecules targeting intracellular signaling to address specific physiological aspects of the disease. Previously we identified a small molecule, 2-hydroxyestradiol (2-OHE2), an inhibitor of TNF-α by an in-silico study.
View Article and Find Full Text PDFSpices played crucial and variable roles in traditions, culture, history, religious ceremonials and festivals along with fetching food flavor and microbial protection globally due to presence of structurally unique and multi-natured chemotypes. Their existence in dishes portrayed key roles in improving shelf life by regulating spoilage of cuisine with different synergistic mechanism. Histo-anatomically (A) sowa exhibited distinguished cellular attributes which created remarkable differences with T.
View Article and Find Full Text PDFHerein, the synthesis, anti-cancer evaluation, and in silico studies of a series of 1,2,4-oxadiazole compounds (8-15) are disclosed. The synthesized molecules were tested in vitro for anti-cancer activity against MCF-7, MDA-MB-231, HeLa, Ishikawa cell lines and human embryonic kidney (HEK-293) cell lines. Among the synthesized compounds, 9 and 15 exhibited significant cytotoxicity, with IC values of 7.
View Article and Find Full Text PDFPlant microRNAs (miRNA) are regularly consumed orally along with diet, gaining attention for their RNA-based drug potential because of their ability to regulate mammalian gene expression specifically at the post-transcriptional level. Medicinally valued plants are well known for their anti-inflammatory property; however, the contribution of their miRNA in managing inflammation has been less studied. We investigated miRNA from four medicinally valued regularly consumed spices, and validated one of the most potential miRNA 'Clo-miR-14' for its thermal stability, and absorption in the plasma samples of RA patient's by RT-PCR.
View Article and Find Full Text PDFThermoplastic composite organosheets (OSs) are increasingly recognized as a viable solution for automotive and aerospace structures, offering a range of benefits including cost-effectiveness through high-rate production, lightweight design, impact resistance, formability, and recyclability. This study examines the impact response, post-impact strength evaluation, and hot-pressing repair effectiveness of woven glass fiber nylon composite OSs across varying impact energy levels. Experimental investigations involved subjecting composite specimens to impact at varying energy levels using a drop-tower test rig, followed by compression-after-impact (CAI) tests.
View Article and Find Full Text PDFIntroduction: In the sub-continent, there is a huge discrepancy between the cornea collected and the ever-increasing demand. Lack of awareness, faulty perceptions, and unwillingness to donate corneas are the major hurdles.
Objectives: To assess the level of awareness among doctors, students, and paramedics in a teaching hospital.
This review explores the recent advancements in the design and synthesis of pseudo-natural products (pseudo-NPs) by employing innovative principles and strategies, heralding a transformative era in chemistry and biology. Pseudo-NPs, produced through in silico fragmentation and the de novo recombination of natural product fragments, reveal compounds endowed with distinct biological activities. Their advantage lies in transcending natural product structures, fostering diverse possibilities.
View Article and Find Full Text PDFRheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease that causes joint inflammation and destruction with an unknown origin. Our study aims to elucidate the molecular mechanism behind HIF1α overexpression in RA. Dysregulated miRNA expressions are known to influence gene behavior, thereby enhancing cell proliferation, inflammation, and resistance to apoptosis, contributing to RA development.
View Article and Find Full Text PDFBackground: Rheumatoid arthritis (RA) is a chronic inflammatory disease induced by TNF-α, which increases fibroblast-like synoviocytes inflammation, resulting in cartilage destruction. The current work sought to comprehend the pathophysiological importance of TNF-α stimulation on differential protein expression and their regulation by apigenin using in-vitro and in-vivo models of RA.
Methods: The human RA synovial fibroblast cells were stimulated with or without TNF-α (10 ng/ml) and treated with 40 μM apigenin.
Human skin emits a series of volatile compounds from the skin due to various metabolic processes, microbial activity, and several external factors. Changes in the concentration of skin volatile metabolites indicate many diseases, including diabetes, cancer, and infectious diseases. Researchers focused on skin-emitted compounds to gain insight into the pathophysiology of various diseases.
View Article and Find Full Text PDFAlthough emotion recognition has been studied for decades, a more accurate classification method that requires less computing is still needed. At present, in many studies, EEG features are extracted from all channels to recognize emotional states, however, there is a lack of an efficient feature domain that improves classification performance and reduces the number of EEG channels.In this study, a continuous wavelet transform (CWT)-based feature representation of multi-channel EEG data is proposed for automatic emotion recognition.
View Article and Find Full Text PDFInflammation and autoimmunity are the root cause of rheumatoid arthritis, a destructive disease of joints. Multiple biomolecules are involved in the pathogenesis of RA and are related to various events of molecular biology. RNA is a versatile biomolecule, playing numerous roles at structural, functional, and regulatory stages to maintain cellular homeostasis.
View Article and Find Full Text PDFTumor necrosis factor alpha (TNF-α) is the major cause of inflammation in autoimmune diseases like rheumatoid arthritis (RA). It's mechanisms of signal transduction through nuclear factor kappa B (NF-kB) pathway via small molecules such as metabolite crosstalk are still elusive. In this study, we have targeted TNF-α and NF-kB through metabolites of RA, to inhibit TNF-α activity and deter NF-kB signaling pathways, thereby mitigating the disease severity of RA.
View Article and Find Full Text PDFPathogenic bacteria, with their innate resistance to drugs, pose a constant threat to human health and well-being and put a persistent strain on the health care system. Development of more effective and safer novel antibacterial drugs is warranted to counter the menace unleashed by pathogenic bacteria. Integration of privileged pharmacophores from various bioactive molecules into a single template is a promising strategy to obtain new leads with unique mechanisms of action to overcome drug resistance.
View Article and Find Full Text PDF: The emergence of wireless capsule endoscopy (WCE) has presented a viable non-invasive mean of identifying gastrointestinal diseases in the field of clinical gastroenterology. However, to overcome its extended time of manual inspection, a computer aided automatic detection system is getting vast popularity. In this case, major challenges are low resolution and lack of regional context in images extracted from WCE videos.
View Article and Find Full Text PDFOxygen- and sulphur-based heterocycles form the core structure of many biologically active molecules as well as U.S. FDA-approved drugs.
View Article and Find Full Text PDFIn recent years, the application of various recommendation algorithms on over-the-top (OTT) platforms such as Amazon Prime and Netflix has been explored, but the existing recommendation systems are less effective because either they fail to take an advantage of exploiting the inherent user relationship or they are not capable of precisely defining the user relationship. On such platforms, users generally express their preferences for movies and TV shows and also give ratings to them. For a recommendation system to be effective, it is important to establish an accurate and precise relationship between the users.
View Article and Find Full Text PDFAnticancer Agents Med Chem
October 2022
Background: In recent years, there has been a crucial need for the design and development of novel anticancer drugs that can lessen the serious health problems and unwanted side effects associated with currently used anticancer drugs. The triazole nucleus is well-recognized to possess numerous pharmacological activities, including anticancer, as revealed by various investigations on anticancer drugs and the latest research findings.
Objective: The aim of this review article is to summarise the anticancer potential of 1, 2, 3-triazole, 1, 2, 4-triazole and heterocycle-fused triazole derivatives against several human cancer cell lines, compiling research articles published between 2010 and 2021.