The current academic and business landscape does not provide a clear path for doctoral trainees graduating. Moreover, the fundamental need of the hour is diversification of the workforce where PhD graduates need to be trained to do more beyond basic scientific research. One of the possible paths that is now becoming popular as science enters its translational phase is research commercialization and technology transfer.
View Article and Find Full Text PDFGenomic imprinting is a phenomenon that restricts transcription to predominantly one parental allele. How this transcriptional duality is regulated is poorly understood. Here we perform an RNA interference screen for epigenetic factors involved in paternal allelic silencing at the Kcnq1ot1 imprinted domain in mouse extraembryonic endoderm stem cells.
View Article and Find Full Text PDFRecently, many advancements in genome-wide chromatin topology and nuclear architecture have unveiled the complex and hidden world of the nucleus, where chromatin is organized into discrete neighbourhoods with coordinated gene expression. This includes the active and inactive X chromosomes. Using X chromosome inactivation as a working model, we utilized publicly available datasets together with a literature review to gain insight into topologically associated domains, lamin-associated domains, nucleolar-associating domains, scaffold/matrix attachment regions, and nucleoporin-associated chromatin and their role in regulating monoallelic expression.
View Article and Find Full Text PDFMicroinjection has a long and distinguished history in Xenopus and has been used to introduce a surprisingly diverse array of agents into embryos by both intra- and intercellular means. In addition to nuclei, investigators have variously injected peptides, antibodies, biologically active chemicals, lineage markers, mRNA, DNA, morpholinos, and enzymes. While enumerating many of the different microinjection approaches that can be taken, we will focus upon the mechanical operations and options available to introduce mRNA, DNA, and morpholinos intracellularly into early stage embryos for the study of neurogenesis.
View Article and Find Full Text PDF