Publications by authors named "Saptarshi Ghosh Dastider"

Electrochemical CO reduction reaction (CORR), which is driven by electricity generated from renewable energy sources, is a promising technology for sustainably producing carbon-based chemicals or fuels. Several CORR catalysts have been explored to date, among which copper-based electrocatalysts are the most widely known for electrochemical CORR and are extensively studied for their ability to generate an array of products. Their low selectivity, however, hinders their possibility of being used for practical purposes.

View Article and Find Full Text PDF

Fabrication of cost-effective and robust metal-based electrocatalysts for hydrogen evolution reactions (HER) across the entire pH range has garnered significant attention in harvesting renewable energy. Herein, the fabrication of 3D high-surface Ni Foam-Graphene-Carbon Nanotubes (NGC) decorated with phosphorous-inserted tin selenide (SnSe-P) showcases unprecedented HER activity with minimal overpotentials across all pH ranges (52 mV in acidic, 93 mV in basic, and 198 mV in neutral conditions@10 mA cm) and stability at 1 A cm for 72 h. The as-designed catalyst shows a low overpotential of 122 mV@10 mA cm in alkaline seawater, achieved through controlled electronic distribution on Sn site after incorporation of P in NGC-SnSe-P.

View Article and Find Full Text PDF

The rapid depletion of fossil fuels and ever-growing energy demand have led to a search for renewable clean energy sources. The storage of renewable energy calls for immediate attention to the fabrication of efficient energy storage devices like supercapacitors (SCs). As an electrode material for SCs, MnO has gained wide research interest because of its high theoretical capacitance, variable oxidation state, vast abundance, and low cost.

View Article and Find Full Text PDF

Unraveling the origins of the electrocatalytic activity of composite nanomaterials is crucial but inherently challenging. Here, we present a comprehensive investigation of the influence of different orbitals' interaction in the AuAgCu nanobowl model electrocatalyst during the hydrogen evolution reaction (HER). According to our theoretical study, AgAuCu exhibits a lower energy barrier than AgAu and AgCu bimetallic systems for the HER, suggesting that the trimetallic AgAuCu system interacts optimally with H*, resulting in the most efficient HER catalyst.

View Article and Find Full Text PDF