The position response of a particle subjected to a perturbation is of general interest in physics. We study the modification of the position response function of an ensemble of cold atoms in a magneto-optical trap (MOT) in the presence of tunable light-assisted interactions. We subject the cold atoms to an intense laser light tuned near the photoassociation (PA) resonance and observe the position response of the atoms subjected to a sudden displacement.
View Article and Find Full Text PDFAbsorption imaging is a widely employed technique for detecting cold atom clouds and Bose-Einstein condensates (BECs). There are situations where such images may suffer from unwanted interference fringes, resulting in uncertainties in determining crucial parameters such as the atom number, temperatures, or even dynamics in small timescales. Reducing the acoustic vibrations and recording image frames synchronized with the source of such vibrations can largely reduce these fringes; however, some residual fringes still need to be taken care of for precision measurements.
View Article and Find Full Text PDFReduced visibility is a common problem when light traverses through a scattering medium, and it becomes difficult to identify an object in such scenarios. What we believe to be a novel proof-of-principle technique for improving image visibility based on the quadrature lock-in discrimination algorithm in which the demodulation is performed using an acousto-optic modulator is presented here. A significant improvement in image visibility is achieved using a series of frames.
View Article and Find Full Text PDFWe explore the applications of spin noise spectroscopy (SNS) for detection of the spin properties of atomic ensembles in and out of equilibrium. In SNS, a linearly polarized far-detuned probe beam on passing through an ensemble of atomic spins acquires the information of the spin correlations of the system which is extracted using its time-resolved Faraday-rotation noise. We measure various atomic, magnetic and sub-atomic properties as well as perform precision magnetometry using SNS in rubidium atomic vapor in thermal equilibrium.
View Article and Find Full Text PDFWe investigate the momentum-dependent transport of 1D quasicondensates in quasiperiodic optical lattices. We observe a sharp crossover from a weakly dissipative regime to a strongly unstable one at a disorder-dependent critical momentum. In the limit of nondisordered lattices the observations suggest a contribution of quantum phase slips to the dissipation.
View Article and Find Full Text PDF