Although both salinity and alkalinity result from accumulation of soluble salts in soil, high pH and ionic imbalance make alkaline stress more harmful to plants. This study aimed to provide molecular insights into the alkalinity tolerance using a recombinant inbred line (RIL) population developed from a cross between Cocodrie and Dular with contrasting response to alkalinity stress. Forty-six additive QTLs for nine morpho-physiological traits were mapped on to a linkage map of 4679 SNPs under alkalinity stress at the seedling stage and seven major-effect QTLs were for alkalinity tolerance scoring, Na and K concentrations and Na:K ratio.
View Article and Find Full Text PDFSoil alkalinity is an important stressor that impairs crop growth and development, resulting in reduced crop productivity. Unlike salinity stress, research efforts to understand the mechanism of plant adaptation to alkaline stress is limited in rice, a major staple food for the world population. We evaluated a population of 193 recombinant inbred lines (RIL) developed from a cross between Cocodrie and N22 under alkaline stress at the seedling stage.
View Article and Find Full Text PDFFlowering is a key agronomic trait that influences adaptation and productivity. Previous studies have indicated the genetic complexity associated with the flowering response in a photoinsensitive weedy rice accession PSRR-1 despite the presence of a photosensitive allele of a key flowering gene . In this study, we used whole-genome and RNA sequencing data from both cultivated and weedy rice to add further insights.
View Article and Find Full Text PDFPlant architecture is critical for enhancing the adaptability and productivity of crop plants. Mutants with an altered plant architecture allow researchers to elucidate the genetic network and the underlying mechanisms. In this study, we characterized a novel rice mutant with short height, small panicle, and narrow and thick deep green leaves that was identified from a cross between a rice cultivar and a weedy rice accession.
View Article and Find Full Text PDFThe indiscriminate use of nitrogenous fertilizers continues unabated for commercial crop production, resulting in air and water pollution. The development of rice varieties with enhanced nitrogen use efficiency (NUE) will require a thorough understanding of the molecular basis of a plant's response to low nitrogen (N) availability. The global expression profiles of root tissues collected from low and high N treatments at different time points in two rice genotypes, Pokkali and Bengal, with contrasting responses to N stress and contrasting root architectures were examined.
View Article and Find Full Text PDFBoth SH and BHA weedy rice genotypes evolved independently and have distinct genomic composition. Different genetic mechanisms may be responsible for their competitiveness and adaptation to diverse environmental conditions. Two major types of weedy rice are recognized in the USA based on morphology: straw-hull (SH) and black-hull awned (BHA) weedy rice.
View Article and Find Full Text PDFInfection of viruses in plants often modifies plant responses to biotic and abiotic stresses. In the present study we examined the effects of Rice tungro spherical virus (RTSV) infection on drought response in rice. RTSV infection delayed the onset of leaf rolling by 1-2 days.
View Article and Find Full Text PDFThe impact of modern agriculture on the evolutionary trajectory of plant pathogens is a central question for crop sustainability. The Green Revolution replaced traditional rice landraces with high-yielding varieties, creating a uniform selection pressure that allows measuring the effect of such intervention. In this study, we analyzed a unique historical pathogen record to assess the impact of a major resistance gene, Xa4, in the population structure of Xanthomonas oryzae pv.
View Article and Find Full Text PDF