Publications by authors named "Sapna Bajeli"

Tuberculosis is a chronic disease that displays several features commonly associated with biofilm-associated infections: immune system evasion, antibiotic treatment failures, and recurrence of infection. However, although Mycobacterium tuberculosis (Mtb) can form cellulose-containing biofilms in vitro, it remains unclear whether biofilms are formed during infection in vivo. Here, we demonstrate the formation of Mtb biofilms in animal models of infection and in patients, and that biofilm formation can contribute to drug tolerance.

View Article and Find Full Text PDF

The deacetylase SIRT1 (sirtuin 1) has emerged as a major regulator of nucleocytoplasmic distribution of macroautophagy/autophagy marker MAP1LC3/LC3 (microtubule-associated protein 1 light chain 3). Activation of SIRT1 leads to the deacetylation of LC3 and its translocation from the nucleus into the cytoplasm leading to an increase in the autophagy flux. Notably, hydrogen sulfide (HS) is a cytoprotective gasotransmitter known to activate SIRT1 and autophagy; however, the underlying mechanism for both remains unknown.

View Article and Find Full Text PDF

Recently, ATP synthase inhibitor Bedaquiline was approved for the treatment of multi-drug resistant tuberculosis emphasizing the importance of oxidative phosphorylation for the survival of mycobacteria. ATP synthesis is primarily dependent on the generation of proton motive force through the electron transport chain in mycobacteria. The mycobacterial electron transport chain utilizes two terminal oxidases for the reduction of oxygen, namely the supercomplex and the cytochrome oxidase.

View Article and Find Full Text PDF

(Mtb) exhibits remarkable metabolic flexibility that enables it to survive a plethora of host environments during its life cycle. With the advent of bedaquiline for treatment of multidrug-resistant tuberculosis, oxidative phosphorylation has been validated as an important target and a vulnerable component of mycobacterial metabolism. Exploiting the dependence of Mtb on oxidative phosphorylation for energy production, several components of this pathway have been targeted for the development of new antimycobacterial agents.

View Article and Find Full Text PDF