Tropical infectious diseases inflict an unacceptable burden of disease on humans living in developing countries. Although anti-pathogenic drugs have been widely used, they carry a constant threat of selecting for resistance. Vaccines offer a promising means by which to enhance the global control of tropical infectious diseases; however, these have been difficult to develop, mostly because of the complex nature of the pathogen lifecycles.
View Article and Find Full Text PDFCerebral malaria (CM) is a severe neurological complication caused by Plasmodium falciparum parasites; it is characterized by the sequestration of infected red blood cells within the cerebral microvasculature. New findings, combined with a better understanding of the central nervous system (CNS) barriers, have provided greater insight into the players and events involved in CM, including site-specific T cell responses in the human brain. Here, we review the updated roles of innate and adaptive immune responses in CM, with a focus on the role of the perivascular macrophage-endothelium unit in antigen presentation, in the vascular and perivascular compartments.
View Article and Find Full Text PDFObjectives: The immunologic events that build up to the fatal neurological stage of experimental cerebral malaria (ECM) are incompletely understood. Here, we dissect immune cell behaviour occurring in the central nervous system (CNS) when ANKA (PbA)-infected mice show only minor clinical signs.
Methods: A 2-photon intravital microscopy (2P-IVM) brain imaging model was used to study the spatiotemporal context of early immunological events during ECM.
Toxoplasmic encephalitis is an AIDS-defining condition. The decline of IFN-γ-producing CD4 T cells in AIDS is a major contributing factor in reactivation of quiescent Toxoplasma gondii to an actively replicating stage of infection. Hence, it is important to characterize CD4-independent mechanisms that constrain acute T.
View Article and Find Full Text PDFThe global prevalence of respiratory infectious and inflammatory diseases remains a major public health concern. Prevention and management strategies have not kept pace with the increasing incidence of these diseases. The airway mucosa is the most common portal of entry for infectious and inflammatory agents.
View Article and Find Full Text PDFTuberculosis (TB) is the deadliest infectious disease worldwide. Bacille-Calmette-Guérin (BCG), the only licensed TB vaccine, affords variable protection against TB but remains the gold standard. BCG improvement is focused around three strategies: recombinant BCG strains, heterologous routes of administration, and booster vaccination.
View Article and Find Full Text PDFTuberculosis (TB) is a major global public health problem causing significant mortality and morbidity. In addition to ~10.4 million cases of active TB annually, it is estimated that about two billion people are latently infected with (), the causative agent of TB.
View Article and Find Full Text PDFThe kynurenine pathway (KP) is the major metabolic pathway of the essential amino acid tryptophan (TRP). Stimulation by inflammatory molecules, such as interferon-γ (IFN-γ), is the trigger for induction of the KP, driving a complex cascade of production of both neuroprotective and neurotoxic metabolites, and in turn, regulation of the immune response and responses of brain cells to the KP metabolites. Consequently, substantial evidence has accumulated over the past couple of decades that dysregulation of the KP and the production of neurotoxic metabolites are associated with many neuroinflammatory and neurodegenerative diseases, including Parkinson's disease, AIDS-related dementia, motor neurone disease, schizophrenia, Huntington's disease, and brain cancers.
View Article and Find Full Text PDFDuring experimental cerebral malaria (ECM) mice develop a lethal neuropathological syndrome associated with microcirculatory dysfunction and intravascular leukocyte sequestration. The precise spatio-temporal context in which the intravascular immune response unfolds is incompletely understood. We developed a 2-photon intravital microscopy (2P-IVM)-based brain-imaging model to monitor the real-time behaviour of leukocytes directly within the brain vasculature during ECM.
View Article and Find Full Text PDFFront Cell Neurosci
January 2013
Intravital imaging of the superficial brain tissue in mice represents a powerful tool for the dissection of the cellular and molecular cues underlying inflammatory and infectious central nervous system (CNS) diseases. We present here a step-by-step protocol that will enable a non-specialist to set up a two-photon brain-imaging model. The protocol offers a two-part approach that is specifically optimized for imaging leukocytes but can be easily adapted to answer varied CNS-related biological questions.
View Article and Find Full Text PDFCostimulation-deficient dendritic cells (DCs) prevent autoimmune disease in mouse models. However, autoimmune-prone mice and humans fail to control expansion of peripheral autoreactive effector memory T cells (T(EMs)), which resist immunoregulation by costimulation-deficient DCs. In contrast, activation of DC costimulation may be coupled with regulatory capacity.
View Article and Find Full Text PDFNuclear factor (NF)-kappaB is a transcription factor family which transmits signals from the cell surface to the nucleus, resulting in transcriptional effects on genes involved in inflammation, cell differentiation and survival. The signaling of NF-kappaB and mitogen-activated protein (MAP) kinases through adapter molecules is of critical importance to survival and activation of all cells in the body, including those regulating innate and adaptive immunity. Here we review the individual and intersecting roles played by the alternate and classical NF-kappaB pathways in the pathogenesis of autoimmune disease.
View Article and Find Full Text PDFDendritic cell (DC) differentiation is abnormal in type 1 diabetes mellitus (T1DM). However, the nature of the relationship between this abnormality and disease pathogenesis is unknown. We studied the LPS response in monocytes and monocyte-derived DCs isolated from T1DM patients and from non-T1DM controls.
View Article and Find Full Text PDFSequence variation in the Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) oncogene structure may affect antigen-presenting cell (APC) function of infected B cells and immune escape by EBV-specific T cells and thus contribute to the development of malignancy. Normal B cell-associated LMP1 (B-LMP1) upregulates B cell APC function through activation of the necrosis factor (NF)-kappaB subunit, RelB. We examined the ability of B-LMP1 and a nasopharyngeal carcinoma-associated LMP1 (NPC-LMP1) to modulate B cell APC function and T-cell responses.
View Article and Find Full Text PDFFever is an evolutionarily conserved mechanism to improve survival during infection. Previous studies have shown that feverlike temperatures directly enhance the function of murine bone marrow-derived dendritic cells (DCs). In the present study, we examined the response of human monocyte-derived DC to 39.
View Article and Find Full Text PDFIL-1 is a key proinflammatory driver of several autoimmune diseases including juvenile inflammatory arthritis, diseases with mutations in the NALP/cryopyrin complex and Crohn's disease, and is genetically or clinically associated with many others. IL-1 is a pleiotropic proinflammatory cytokine; however the mechanisms by which increased IL-1 signaling promotes autoreactive T cell activity are not clear. Here we show that autoimmune-prone NOD and IL-1 receptor antagonist-deficient C57BL/6 mice both produce high levels of IL-1, which drives autoreactive effector cell expansion.
View Article and Find Full Text PDFPrevious studies have shown that Epstein-Barr virus-encoded latent membrane protein 1 (LMP1) is uniquely able to up-regulate the expression of the peptide transporters (referred to as TAP-1 and TAP-2) and major histocompatibility complex (MHC) class I in Burkitt's lymphoma (BL) cell lines. This up-regulation is often accompanied by a restoration of antigen-presenting function as measured by the ability of these cells to present endogenously expressed viral antigen to cytotoxic T lymphocytes. Here we show that the expression of LMP1 resulted in up-regulation and nuclear translocation of RelB that were coincident with increased expression of MHC class I in BL cells.
View Article and Find Full Text PDF