Publications by authors named "Saowapak S Thongvigitmanee"

Background: Cone-beam computed tomography (CBCT) has been introduced for breast-specimen imaging to identify a free resection margin of abnormal tissues in breast conservation. As well-known, typical micro CT consumes long acquisition and computation times. One simple solution to reduce the acquisition scan time is to decrease of the number of projections, but this method generates streak artifacts on breast specimen images.

View Article and Find Full Text PDF

Background: Iterative reconstruction for cone-beam computed tomography (CBCT) has been applied to improve image quality and reduce radiation dose. In a case where an object's actual projection is larger than a flat panel detector, CBCT images contain truncated data or incomplete projections, which degrade image quality inside the field of view (FOV). In this work, we propose truncation effect reduction for fast iterative reconstruction in CBCT imaging.

View Article and Find Full Text PDF

The quality of images obtained from cone-beam computed tomography (CBCT) is important in diagnosis and treatment planning for dental and maxillofacial applications. However, X-ray scattering inside a human head is one of the main factors that cause a drop in image quality, especially in the CBCT system with a wide-angle cone-beam X-ray source and a large area detector. In this study, the X-ray scattering distribution within a standard head phantom was estimated using the Monte Carlo method based on Geant4.

View Article and Find Full Text PDF

Regular examination of breasts may prevent and help to cure because breast cancer is treatable when it is detected early. Therefore, a breast cancer screening modality being sensitivity and cost-effective like ultrasonic imaging modality (US), is strongly required. In addition, the combination of a conventional US and its adjunct, Color Doppler has been proved for decreasing the rate of false-positive in breast cancer diagnosis.

View Article and Find Full Text PDF

Soft tissue images from portable cone beam computed tomography (CBCT) scanners can be used for diagnosis and detection of tumor, cancer, intracerebral hemorrhage, and so forth. Due to large field of view, X-ray scattering which is the main cause of artifacts degrades image quality, such as cupping artifacts, CT number inaccuracy, and low contrast, especially on soft tissue images. In this work, we propose the X-ray scatter correction method for improving soft tissue images.

View Article and Find Full Text PDF

Due to accurate 3D information, computed tomography (CT), especially cone-beam CT or dental CT, has been widely used for diagnosis and treatment planning in dentistry. Axial images acquired from both medical and dental CT scanners can generate synthetic panoramic images similar to typical 2D panoramic radiographs. However, the conventional way to reconstruct the simulated panoramic images is to manually draw the dental arch on axial images.

View Article and Find Full Text PDF

Scatter signals in cone-beam computed tomography (CBCT) cause a significant problem that degrades image quality of reconstructed images, such as inaccuracy of CT numbers and cupping artifacts. In this paper, we will present an experiment-based scatter correction method by pre-processing projection images using a statistical model combined with experimental kernels. The convolution kernels are estimated by using different thickness of PMMA plates attached to a beam stop lead sheet such that the scatter signal values can be measure in the shadow area of the projection images caused by the lead sheet.

View Article and Find Full Text PDF

Cone-beam computed tomography (CBCT) has become increasingly popular in dental and maxillofacial imaging due to its accurate 3D information, minimal radiation dose, and low machine cost. In this paper, we have proposed the newly developed CBCT scanner, called DentiiScan. Our gantry system consisting of a cone-beam X-ray source and an amorphous silicon flat panel detector is rotated around a patient's head.

View Article and Find Full Text PDF