Hyperspectral imaging (HSI) is a promising tool in chlorophyll quantification, providing a non-invasive method to collect important information for effective crop management. HSI contributes to food security solutions by optimising crop yields. In this study, we presented a custom HSI system specifically designed to provide a quantitative analysis of leaf chlorophyll content (LCC).
View Article and Find Full Text PDFNitrogen (N) deficiency can limit rice productivity, whereas the over- and underapplication of N results in agronomic and economic losses. Process-based crop models are useful tools and could assist in optimizing N management, enhancing the production efficiency and profitability of upland rice production systems. The study evaluated the ability of CSM-CERES-Rice to determine optimal N fertilization rate for different sowing dates of upland rice.
View Article and Find Full Text PDFThe world is facing rapid climate change and a fast-growing global population. It is believed that the world population will be 9.7 billion in 2050.
View Article and Find Full Text PDFSynchronizing nitrogen (N) fertilization with planting date (PD) could enhance resource use efficiency and profitability of upland rice ( L.) production in Thailand. The objective of the study was to assess upland rice responses to four N fertilization rates (NFRs) and three planting dates.
View Article and Find Full Text PDFLowland rice is an important cereal crop that plays a key role in the food security and the economy of Thailand. Terminal water stress (TWS) in rainfed lowland areas poses threats to rice productivity due to stress occurrence at terminal crop stages and extreme sensitivity of rice to TWS. A two-year study was conducted to characterize the performance of yield and yield attributes of twelve Thai lowland rice genotypes under TWS, to identify stress-tolerant genotypes using stress response indices and to identify promising stress indices which are correlated with grain yield (GY) under well-watered (WW) and TWS conditions for their use as rapid identifiers in a rice crop breeding program for enhancing drought stress tolerance.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
February 2022
Copper (Cu) contamination in soil is an environmental issue that affects rice growth and development. This study investigated changes in photosynthetic capacities in combination with integrated biomarker responses at different growth stages of rice (Oryza sativa L. var.
View Article and Find Full Text PDFInsertional mutagenesis using transfer DNA or transposable elements, which is an important tool in functional genomics and is well established in several crops, has not been developed in potato (Solanum tuberosum). Here, we report the application of the tobacco (Nicotiana tabacum) Tnt1 retrotransposon as an insertional mutagen in potato. The Tnt1 retrotransposon was introduced into a highly homozygous and self-compatible clone, 523-3, of the diploid wild potato species Solanum chacoense.
View Article and Find Full Text PDFThe roles of Arg548 and Gln552 residues in the active site of the carboxyl transferase domain of Rhizobium etli pyruvate carboxylase were investigated using site-directed mutagenesis. Mutation of Arg548 to alanine or glutamine resulted in the destabilization of the quaternary structure of the enzyme, suggesting that this residue has a structural role. Mutations R548K, Q552N, and Q552A resulted in a loss of the ability to catalyze pyruvate carboxylation, biotin-dependent decarboxylation of oxaloacetate, and the exchange of protons between pyruvate and water.
View Article and Find Full Text PDF