Publications by authors named "Saoussen Dally"

Objective: Apoptotic-like phase is an essential step for the platelet formation from megakaryocytes. How controlled is this signaling pathway remained poorly understood. The aim of this study was to determine whether endoplasmic reticulum (ER) stress-induced apoptosis occurs during thrombopoiesis.

View Article and Find Full Text PDF

Among the players involved in Ca(2+) homeostasis in heart tissue are SERCA (sarco/endoplasmic reticulum Ca(2+) ATPase)-type Ca(2+) pumps. Until recently, human heart was known to coexpress major SERCA2a and minor SERCA2b isoforms. Here, we will summarize data showing that nonfailing human heart is equipped with an increasing variety of SERCA isoforms comprised new SERCA2 (ATP2A2) and SERCA3 (ATP2A3) gene products.

View Article and Find Full Text PDF

The human sarco/endoplasmic reticulum (ER) Ca(2+)ATPase 3 (SERCA3) gene gives rise to SERCA3a-3f isoforms, the latter inducing ER stress in vitro. Here, we first demonstrated the co-expression of SERCA3a, -3d and -3f proteins in the heart. Evidence for endogenous proteins was obtained by using isoform-specific antibodies including a new SERCA3d-specific antibody, and either Western blotting of protein lysates or immunoprecipitation of membrane proteins.

View Article and Find Full Text PDF

Platelet Ca(2+) homeostasis is controlled by a multi-Ca(2+)ATPase system including two PMCA (plasma membrane Ca(2+)ATPase) and seven SERCA (sarco/endoplasmic reticulum Ca(2+)ATPase) isoforms. Previous studies have shown similar platelet Ca(2+) abnormalities in diabetic and hypertensive patients, including an increase in intracellular [Ca(2+)](I), a possible modulation of PMCA activity and increased PMCA tyrosine phosphorylation. Very recently, we found that platelets from diabetic patients also exhibited increased PMCA4b expression.

View Article and Find Full Text PDF

The aetiology of adolescent idiopathic scoliosis (AIS), the most common form of scoliosis, is unclear. Previous studies showed controversial platelet abnormalities including intracellular calcium. Platelet Ca2+ homeostasis is controlled by a multi-Ca2+-ATPase system including SERCA (sarco/endoplasmic reticulum Ca2+-ATPase) and PMCA (plasma membrane Ca2+-ATPase) isoforms.

View Article and Find Full Text PDF

Sarco/endoplasmic reticulum Ca(2+)ATPases (SERCAs) pump free Ca(2+) from the cytosol into the endoplasmic reticulum. The human SERCA3 family counts six members named SERCA3a to 3f. However, the exact role of these different isoforms in cellular physiology remains undetermined.

View Article and Find Full Text PDF

We recently documented the expression of a novel human mRNA variant encoding a yet uncharacterized SERCA [SR (sarcoplasmic reticulum)/ER (endoplasmic reticulum) Ca2+-ATPase] protein, SERCA2c [Gélébart, Martin, Enouf and Papp (2003) Biochem. Biophys. Res.

View Article and Find Full Text PDF