Development of disease-modifying therapeutics is urgently needed for treating Alzheimer disease (AD). AD is characterized by toxic β-amyloid (Aβ) peptides produced by β- and γ-secretase-mediated cleavage of the amyloid precursor protein (APP). β-secretase inhibitors reduce Aβ levels, but mechanism-based side effects arise because they also inhibit β-cleavage of non-amyloid substrates like Neuregulin.
View Article and Find Full Text PDFβ-secretase, a key enzyme involved in amyloid-β generation, is an attractive candidate for Alzheimer's disease therapy. Transition-state inhibitors of β-secretase are designed to achieve specificity. However, these inhibitors bind only to the active conformation of the enzyme and as the active β-secretase is sequestered in subcellular compartments, new strategies have to be implemented.
View Article and Find Full Text PDFAlzheimer's disease (AD) is the most common form of neurodegenerative disease. A characteristic feature of the disease is the presence of amyloid-β (Aβ) which either in its soluble oligomeric form or in the plaque-associated form is causally linked to neurodegeneration. Aβ peptide is liberated from the membrane-spanning -amyloid precursor protein by sequential proteolytic processing employing β- and γ-secretases.
View Article and Find Full Text PDFNeurexins (NRXNs) are synaptic cell adhesion molecules having essential roles in the assembly and maturation of synapses into fully functional units. Immunocytochemical and electrophysiological studies have shown that specific binding across the synaptic cleft of the ectodomains of presynaptic NRXNs and postsynaptic neuroligins have the potential to bidirectionally coordinate and trigger synapse formation. Moreover, in vivo studies as well as genome-wide association studies pointed out implication of NRXNs in the pathogenesis of cognitive disorders including autism spectrum disorders and different types of addictions including opioid and alcohol dependences, suggesting an important role in synaptic function.
View Article and Find Full Text PDF