In this study, we successfully identified peptide fragments that have a strong affinity toward the surface of a silicon nitride (SiN) substrate. An E. coli soluble protein, which was preferentially adsorbed onto the surface of a SiN substrate was isolated by 2D electrophoresis, and it was identified as "elongation factor Tu (ELN)" via the peptide MS fingerprinting method.
View Article and Find Full Text PDFHerein, we demonstrate the potential of droplet-based microfluidics for controlling protein crystallization and generating single-protein crystals. We estimated the critical droplet size for obtaining a single crystal within a microdroplet and investigated the crystallization of four model proteins to confirm the effect of protein molecular diffusion on crystallization. A single crystal was obtained in microdroplets smaller than the critical size by using droplet-based microfluidics.
View Article and Find Full Text PDFWe describe the technical aspects of the in-situ X-ray diffraction of a protein crystal prepared by a nanodroplet-based crystallization method. We were able to obtain diffraction patterns from a crystal grown in a capillary without any manipulation. Especially in our experimental approach, the crystals that moved to the nanodroplet interface were fixed strongly enough to carry out X-ray diffraction measurements that could be attributed to the high surface tension of the nanodroplet.
View Article and Find Full Text PDF