Chem Commun (Camb)
October 2023
Removal of dyes from various industrial effluents is a great challenge, and cost-effective methods and materials with high dye removal efficacy are in high demand. Adsorption, nanofiltration and photocatalytic degradation are three major techniques that have been investigated for dye removal. PIMs are promising materials for use in these three methods based on their attributes, such as microporosity, solution processibility, high chemical stability and tunability through facile synthesis and easy postmodification.
View Article and Find Full Text PDFThe development of polymers of intrinsic microporosity (PIMs) over the last two decades has established them as a distinct class of microporous materials, which combine the attributes of microporous solid materials and the soluble nature of glassy polymers. Due to their solubility in common organic solvents, PIMs are easily processable materials that potentially find application in membrane-based separation, catalysis, ion separation in electrochemical energy storage devices, sensing, etc. Dibenzodioxin linkage, Tröger's base, and imide bond-forming reactions have widely been utilized for synthesis of a large number of PIMs.
View Article and Find Full Text PDFPorous crystalline frameworks including zeolites, metal-organic frameworks (MOFs), covalent organic frameworks (COFs) and hydrogen-bonded organic frameworks (HOFs) have attracted great research interest in recent years. In addition to their assembly in the solid-state being fundamentally interesting and aesthetically pleasing, their potential applications have now pervaded in different areas of chemistry, biology and materials science. When framework materials are endowed with 'flexibility', they exhibit some properties (e.
View Article and Find Full Text PDFWhile the loading of liquid or solid materials in the pores of metal-organic frameworks (MOFs) can yield composite materials with novel and useful emergent properties, the loading of solids, and ionic solids in particular, can be challenging. We report the loading of the salts NHNO and LiNO in the MOF UiO-66. The relatively low-melting NHNO is loaded in UiO-66 in a solvent-free method, and loading is complete in 8 h at 75 °C, far below the melting point of NHNO.
View Article and Find Full Text PDFFew hydrogen adsorbents balance high usable volumetric and gravimetric capacities. Although metal-organic frameworks (MOFs) have recently demonstrated progress in closing this gap, the large number of MOFs has hindered the identification of optimal materials. Here, a systematic assessment of published databases of real and hypothetical MOFs is presented.
View Article and Find Full Text PDFWhite organic light-emitting diodes (WOLEDs) are at the center stage of OLED research today because of their advantages in replacing the high energy-consuming lighting technologies in vogue for a long time. New materials that emit white light in simple devices are much sought after. We have developed two novel electroluminescent materials, referred to as and , based on a twisted bianthryl core, which are brilliantly fluorescent, thermally highly stable with high and , and exhibit reversible redox property.
View Article and Find Full Text PDFTwo energetic metal-organic frameworks (MOFs), Co-ANTA and Zn-ANTA, are synthesized from 5-amino-3-nitro-1H-1,2,4-triazole (ANTA) and exhibit superior oxygen balance, density, and thermal stability compared to ANTA. The superior oxygen balance is achieved through a combination of hydroxide ligands and deprotonated linkers. Although the materials are isostructural and have similar density, oxygen balance, and sensitivity to heat, their impact sensitivities are significantly different.
View Article and Find Full Text PDFHigh-energy coordination polymers (CPs) based on nitrogen-rich ligands are an emerging class of explosives. However, modulation of the energetic properties of high-energy CPs and the establishment of their structure-function relationship remain in their infancy. In the present study, the utility of coordination polymerization as a technique to modulate the application of critical energetic properties, such as density and thermal stability, of a secondary explosive, 5,5'-dinitro-2H,2H'-3,3'-bi-1,2,4-triazole (DNBT), is presented.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2016
Despite the fact that benzophenone has traditionally served as a prototype molecular system for establishing triplet state chemistry, materials based on molecular systems containing the benzophenone moiety as an integral part have not been exploited as generic host materials in phosphorescent organic light-emitting diodes (PhOLEDs). We have designed and synthesized three novel host materials, i.e.
View Article and Find Full Text PDFA semirigid tetraacid linker H4L functionalized with 1,2,3-triazole was rationally designed and synthesized to access nitrogen-rich MOFs for selective adsorption of CO2. The cadmium MOF, that is, Cd-L, obtained by the reaction of H4L with Cd(NO3)2, is found to be a 3D porous framework structure that is robust to desolvation. Crystal structure analysis reveals channels that are decorated by the triazole moieties of L.
View Article and Find Full Text PDFPorous coordination polymers (CPs) with partially uncoordinated pyridyl rings based on rationally designed polypyridyl linkers are appealing from the point of view of their application as nucleophilic catalysts. A D2d -symmetric tetradentate organic linker L, that is, 2,2',6,6'-tetramethoxy-3,3',5,5'-tetrakis(4-pyridyl)biphenyl, was designed and synthesized for metal-assisted self-assembly aimed at porous CPs. Depending on the nature of the metal ion and the counter anion, the ligand L is found to function as a 3- or 4-connecting building block leading to porous CPs of diverse topologies.
View Article and Find Full Text PDF