Publications by authors named "Sao M Nguyen"

One of the challenges in the field of human activity recognition in smart homes based on IoT sensors is the variability in the recorded data. This variability arises from differences in home configurations, sensor network setups, and the number and habits of inhabitants, resulting in a lack of data that accurately represent the application environment. Although simulators have been proposed in the literature to generate data, they fail to bridge the gap between training and field data or produce diverse datasets.

View Article and Find Full Text PDF

Adherence to exercise programs for chronic low back pain (CLBP) is a major issue. The R-COOL feasibility study evaluated humanoid robot supervision of exercise for CLBP. Aims are as follows: (1) compare stretching sessions between the robot and a physiotherapist (control), (2) compare clinical outcomes between groups, and (3) evaluate participant perceptions of usability and satisfaction and therapist acceptability of the robot system.

View Article and Find Full Text PDF

Recent advances in Internet of Things (IoT) technologies and the reduction in the cost of sensors have encouraged the development of smart environments, such as smart homes. Smart homes can offer home assistance services to improve the quality of life, autonomy, and health of their residents, especially for the elderly and dependent. To provide such services, a smart home must be able to understand the daily activities of its residents.

View Article and Find Full Text PDF

We aim at a robot capable to learn sequences of actions to achieve a field of complex tasks. In this paper, we are considering the learning of a set of interrelated complex tasks hierarchically organized. To learn this high-dimensional mapping between a continuous high-dimensional space of tasks and an infinite dimensional space of unbounded sequences of actions, we introduce a new framework called "procedures", which enables the autonomous discovery of how to combine previously learned skills in order to learn increasingly complex combinations of motor policies.

View Article and Find Full Text PDF

vocal development and intrinsic motivation. We propose and experimentally test the hypothesis that general mechanisms of intrinsically motivated spontaneous exploration, also called curiosity-driven learning, can self-organize developmental stages during early vocal learning. We introduce a computational model of intrinsically motivated vocal exploration, which allows the learner to autonomously structure its own vocal experiments, and thus its own learning schedule, through a drive to maximize competence progress.

View Article and Find Full Text PDF