With the development of deep learning, the Super-Resolution (SR) reconstruction of microscopic images has improved significantly. However, the scarcity of microscopic images for training, the underutilization of hierarchical features in original Low-Resolution (LR) images, and the high-frequency noise unrelated with the image structure generated during the reconstruction process are still challenges in the Single Image Super-Resolution (SISR) field. Faced with these issues, we first collected sufficient microscopic images through Motic, a company engaged in the design and production of optical and digital microscopes, to establish a dataset.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
October 2024
With the continuous development of educational informatization, more and more emerging technologies are applied in teaching activities. These technologies provide massive and multidimensional information for teaching research, but at the same time, the information obtained by teachers and students presents an explosive increase. Extracting the core content of the class record text through text summarization technology to generate concise class minutes can significantly improve the efficiency of teachers and students to obtain information.
View Article and Find Full Text PDFBy using the residual source redundancy to achieve the shaping gain, a joint source-channel coded modulation (JSCCM) system has been proposed as a new solution for probabilistic amplitude shaping (PAS). However, the source and channel codes in the JSCCM system should be designed specifically for a given source probability to ensure optimal PAS performance, which is undesirable for systems with dynamically changing source probabilities. In this paper, we propose a new shaping scheme by optimizing the bit-labeling of the JSCCM system.
View Article and Find Full Text PDFIn this paper, a joint group shuffled scheduling decoding (JGSSD) algorithm for a joint source-channel coding (JSCC) scheme based on double low-density parity-check (D-LDPC) codes is presented. The proposed algorithm considers the D-LDPC coding structure as a whole and applies shuffled scheduling to each group; the grouping relies on the types or the length of the variable nodes (VNs). By comparison, the conventional shuffled scheduling decoding algorithm can be regarded as a special case of this proposed algorithm.
View Article and Find Full Text PDFAn FTIR spectrometer often suffers from common problems of band overlap and Poisson noises. In this paper, we show that the issue of infrared (IR) spectrum degradation can be considered as a maximum a posterior (MAP) problem and solved by minimized a cost function that includes a likelihood term and two prior terms. In the MAP framework, the likelihood probability density function (PDF) is constructed based on the observed Poisson noise model.
View Article and Find Full Text PDFRaman spectroscopy often suffers from the problems of band overlap and random noise. In this work, we develop a nonlocal low-rank regularization (NLR) approach toward exploiting structured sparsity and explore its applications in Raman spectral deconvolution. Motivated by the observation that the rank of a ground-truth spectrum matrix is lower than that of the observed spectrum, a Raman spectral deconvolution model is formulated in our method to regularize the rank of the observed spectrum by total variation regularization.
View Article and Find Full Text PDFBand overlap and random noise are a serious problem in infrared spectra, especially for aging spectrometers. In this paper, we have presented a simple method for spectrum restoration. The proposed method is based on local operations, and involves sparse decompositions of each spectrum piece under an evolving overcomplete dictionary, and a simple averaging calculation.
View Article and Find Full Text PDFLaser instruments often suffer from the problem of baseline drift and random noise, which greatly degrade spectral quality. In this article, we propose a variation model that combines baseline correction and denoising. First, to guide the baseline estimation, morphological operations are adopted to extract the characteristics of the degraded spectrum.
View Article and Find Full Text PDFSpectroscopic data often suffer from common problems of band overlap and noise. This paper presents a maximum a posteriori (MAP)-based algorithm for the band overlap problem. In the MAP framework, the likelihood probability density function (PDF) is constructed with Gaussian noise assumed, and the prior PDF is constructed with adaptive total variation (ATV) regularization.
View Article and Find Full Text PDF