Psoriasis is a noncontagious, autoimmune chronic inflammatory disease with an unknown root cause. It is classified as a multifactorial and chronic skin disorder that also affects the immune system and is genetic. Environmental factors such as stress, infections, and injuries all play an important role in the disease's development.
View Article and Find Full Text PDFFront Med Technol
November 2024
In recent years, the Artificial Intelligence (AI) has enabled conventional Combination Devices (CDs) to innovate in healthcare merging with technology sectors. However, the challenges like reliance on predicate devices in US Food and Drug Administration (FDA's 510(k) pathway, especially for perpetually updating AI are stressed. Though the European Union (EU's new Medical Device Regulations address software and AI, fitting adaptive algorithms into conformity assessments remains difficult.
View Article and Find Full Text PDFJ Maxillofac Oral Surg
December 2024
In this article, the photophysical properties of ethyl-3-(benzo[D]thiazol-2-yl)-5-chloro-2-hydroxybenzoate (EBTCH) and ethyl-3-(benzo[D]oxazol-2-yl)-5-chloro-2-hydroxybenzoate (EBOCH) have been explored spectroscopically along with quantum chemical calculations. From a structural viewpoint, both molecules have two proton acceptor sites (thiazole/oxazole N atom and ester O atom) and a common proton donor site (phenolic -OH) connected by a six-membered H-bonding ring capable of both imine-amine and enol-keto photoisomerisation. Steady state absorption and emission spectra and time-resolved fluorescence characteristics of EBTCH and EBOCH and a comparison with the spectral data of controlled compounds 2-(benzo[D]thiazol-2-yl)-4-chlorophenol (BTCP), 2-(benzo[D]oxazol-2-yl)-4-chlorophenol (BOCP) and ethyl 5-chloro-2-hydroxybenzoate (ECHB) support the preference for imine-amine isomerisation over enol-keto isomerization in the excited state.
View Article and Find Full Text PDFNewly approved subunit and mRNA vaccines for respiratory syncytial virus (RSV) demonstrate effectiveness in preventing severe disease, with protection exceeding 80% primarily through the generation of antibodies. An alternative vaccine platform called self-amplifying RNA (saRNA) holds promise in eliciting humoral and cellular immune responses. We evaluate the immunogenicity of a lipid nanoparticle (LNP)-formulated saRNA vaccine called SMARRT.
View Article and Find Full Text PDFUltrasmall nanoparticles on nanocarbons enhance the electrocatalytic nitrogen reduction (NRR) efficiency. Herein, we demonstrate a novel method for depositing MoO nanoparticles on defective graphene, achieving a high faradaic efficiency (FE) of 43.1% at -0.
View Article and Find Full Text PDFThis study focuses on the event-triggered control approach for the mathematical model describing the interaction between the sugarcane borer (Diatraea saccharalis) and its egg parasitoid Trichogramma galloi, as well as the combined interaction of Trichogramma galloi and Cotesia flavipes. By employing digital control design, an effective strategy can be devised to minimize the population of natural enemies. Therefore, proposing an event-triggered control mechanism for the sugarcane borer is essential.
View Article and Find Full Text PDFThe unnatural nucleic acid base (uNAB), 6-amino-3-methyl-5-nitropyridin-2(1H)one, often referred to as can form a base pair with the uNAB 2-aminoimidazo[1,2-]-1,3,5-triazin-4(8H)-one (referred to as P) and is analogous to a guanine-cytosine (G-C) pair. However, it is well-known that the nonradiative decay pathway of the P-Z pair is significantly different from that of the G-C pair (Cui et al., , , 605117-605125).
View Article and Find Full Text PDFA series of 16 (hetero)aryl compounds based on coumarin and equol has been efficiently synthesized by exploring the palladium-catalyzed Suzuki cross-coupling reactions. Polyphenol based on coumarin (4-methyl-7-hydroxy coumarin) was initially converted to corresponding coumarin imidazylate and then subjected to Suzuki coupling reaction with 4-methoxyphenylboronic acid to obtain the coupled product. This modified approach was later developed into a one-pot methodology by directly reacting the polyphenol with 1,1-sulfonyldiimidazole (SDI) and boronic acid in situ to obtain the Suzuki coupled product in one step.
View Article and Find Full Text PDFBackground: Plants represent a rich reservoir of bioactive compounds with established therapeutic value in diverse diseases. Notably, the Toll-like receptor-4 (TLR-4) signaling pathway plays a pivotal role in inflammation. Upon engagement with pro-inflammatory ligands like lipopolysaccharide, TLR-4 triggers downstream cascades involving nuclear factor ĸappa B and mitogen- activated protein kinases.
View Article and Find Full Text PDFHerein, we report that triplet vinylnitrenes with 1,3-biradical character can directly participate in photocycloaddition reactions with olefins to produce single diastereomers of the corresponding 1-pyrrolines under 420 nm LEDs in acetonitrile solvent. Moreover, a one-pot method has been developed to produce pyrroles directly through photocycloaddition and oxidation sequences. The excited state of the substrate olefin can sensitize vinyl azide energy transfer, eliminating the need for an external photocatalyst or sensitizer.
View Article and Find Full Text PDFThe traditional intermolecular O-H insertion strategy is typically associated with the reactivity exhibited by the singlet spin state, or it can alter the spin state from triplet to singlet by hydrogen bonding. Herein, we report diazoarylidene succinimide that generates a persistent ground-state triplet carbene under visible light (Blue LED, 456 nm) without a photosensitizer. This triplet carbene undergoes an intramolecular O-H insertion via hydrogen atom transfer, forming a persistent aryloxy radical without altering its spin state and leading to biologically relevant 2-chromenes.
View Article and Find Full Text PDFSupramolecular assemblies of stimuli-responsive amphiphilic molecules have been of utmost interest in targeted drug delivery applications, owing to their capability of sequestering drug molecules in one set of conditions and releasing them in another. To minimize undesired disassembly and stabilize noncovalently encapsulated drug molecules, the strategy of core or shell cross-linking has become a fascinating approach to constructing cross-linked polymeric or small molecule-based nanoassemblies. In this article, we discuss the design and synthetic strategies for cross-linked nanoassemblies from small molecule-based amphiphiles, with robust stability and enhanced drug encapsulation capability.
View Article and Find Full Text PDFPhys Chem Chem Phys
August 2024
Clinical application of anticancer drugs is mostly limited due to their hydrophobic nature, which often results in lower bioavailability and lesser retention in systemic circulation. Despite extensive research on the development of targeted drug delivery systems for cancer treatment, delivery of hydrophobic therapeutic drugs to tumor cells remains a major challenge in the field. To address these concerns, we have precisely engineered a new hyperbranched polymer for the targeted delivery of hydrophobic drugs by using a malonic acid-based AB monomer and 1,6-hexanediol.
View Article and Find Full Text PDFVisible-light-mediated reactions have recently emerged as a powerful strategy for the synthesis of diverse organic molecules under mild reaction conditions. Usually, the reactions are performed at room temperature and thus sensitive functional groups remain unaffected. Thus, this protocol has received intense interest from academia as well as industries.
View Article and Find Full Text PDFThe Repeat Expansion Diseases (REDs) arise from the expansion of a disease-specific short tandem repeat (STR). Different REDs differ with respect to the repeat involved, the cells that are most expansion prone and the extent of expansion. Furthermore, whether these diseases share a common expansion mechanism is unclear.
View Article and Find Full Text PDFLight-matter interaction is crucial to life itself and revolves around many of the central processes in biology. The need for understanding these photochemical and photophysical processes cannot be overemphasized. Interaction of light with biological systems starts with the absorption of light and subsequent phenomena that occur in the excited states of the system.
View Article and Find Full Text PDFNanocarriers (NCs) that can precisely deliver active agents, nutrients and genetic materials into plants will make crop agriculture more resilient to climate change and sustainable. As a research field, nano-agriculture is still developing, with significant scientific and societal barriers to overcome. In this Review, we argue that lessons can be learned from mammalian nanomedicine.
View Article and Find Full Text PDFFacile access to some novel biologically relevant dihydrotriazolopyrimidine carboxylic acid-derived amide analogues using NMI/SOCl, and aromatic and aliphatic primary and secondary amines, is reported herein. The role of -methylimidazole (NMI) as the base and sulfuryl chloride (SOCl) as the coupling reagent has been effectively realized in accessing these molecules in good to excellent yields. The feasibility of the developed protocol has also been extended to the gram-scale synthesis of -benzylbenzamide in a 75% yield from benzoic acid and benzyl amine.
View Article and Find Full Text PDFPeripheral nerve injuries (PNI) impact millions of individuals in the United States, prompting thousands of nerve repair procedures annually. Nerve conduits (NC) are commonly utilized to treat nerve injuries under 3 cm but larger gaps still pose a challenge for successful peripheral nerve regeneration (PNR) and functional recovery. This is partly attributed to the absence of bioactive agents such as stem cells or growth factors in FDA-approved conduits due to safety, harvesting, and reproducibility concerns.
View Article and Find Full Text PDFWe have introduced a sulfoximidation reaction initiated by visible light between α-phenyl vinyl azides and NH-sulfoximines. The cost-effective and readily accessible hypervalent iodine reagent (PIDA) easily promoted the oxidative sulfoximidation process to afford -α-ketoacylated sulfoximines in good to high yields, involving the formation of two new C-O bonds and one C-N bond. Additionally, the protocol offers noteworthy advantages, including its metal-free and photocatalyst-free reaction and its broad substrate compatibility.
View Article and Find Full Text PDFTransition metal oxynitrides are a promising class of functional materials for photoelectrochemical (PEC) applications. Although these compounds are most commonly synthesized via ammonolysis of oxide precursors, such synthetic routes often lead to poorly controlled oxygen-to-nitrogen anion ratios, and the harsh nitridation conditions are incompatible with many substrates, including transparent conductive oxides. Here, we report direct reactive sputter deposition of a family of zirconium oxynitride thin films and the comprehensive characterization of their tunable structural, optical, and functional PEC properties.
View Article and Find Full Text PDF