Fluid catalytic cracking (FCC) particles account for 40 to 45% of worldwide gasoline production. The hierarchical complex particle pore structure allows access of long-chain feedstock molecules into active catalyst domains where they are cracked into smaller, more valuable hydrocarbon products (for example, gasoline). In this process, metal deposition and intrusion is a major cause for irreversible catalyst deactivation and shifts in product distribution.
View Article and Find Full Text PDFWe describe a rapid in situ method for detecting agrochemicals on the surface or in the tissue of fruit using a portable mass spectrometer equipped with an ambient ionization source. Two such ionization methods, low temperature plasma (LTP) and paper spray (PS), were employed in experiments performed at a local grocery store. LTP was used to detect diphenylamine (DPA) directly from the skin of apples in the store and those treated after harvest with DPA were recognized by MS and MS/MS.
View Article and Find Full Text PDFAmbient ionization methods such as desorption electrospray ionization (DESI) allow the analysis of chemicals adsorbed at surfaces without the need for sample (or surface) pretreatment. A limitation of current implementations of these ionization sources is the small size of the area that can be sampled. This makes examination of surfaces of large areas time-consuming because of the need to raster across the surface.
View Article and Find Full Text PDFDesorption electrospray ionization (DESI) is a droplet-based ionization method that is applied to samples in the ambient environment with little or no sample preparation. Its utility for industrial applications is explored here for the case of pharmaceutical cleaning validation. A non-proximate large-area DESI system was built to examine representative areas of the surfaces of reaction vessels used in active product ingredient (API) manufacturing.
View Article and Find Full Text PDF