Borrelia burgdorferi has developed efficient mechanisms for evading the innate immune response during mammalian infection and has been shown to be resistant to the complement-mediated bactericidal activity of human serum. It is well recognized that B. burgdorferi expresses multiple lipoproteins on its surface that bind the human complement inhibitors factor H and factor H-like protein 1 (FH/FHL-1).
View Article and Find Full Text PDFSeveral Borrelia burgdorferi outer surface proteins have been identified over the past decade that are up-regulated by temperature- and/or mammalian host-specific signals as this spirochete is transmitted from ticks to mammals. Given the potential role(s) that these differentially up-regulated proteins may play in B. burgdorferi transmission and Lyme disease pathogenesis, much attention has recently been placed on identifying additional borrelial outer surface proteins.
View Article and Find Full Text PDFThe Lyme disease-pathogen Borrelia burgdorferi binds the complement inhibitor factor H (FH) to its outer surface protein E- (OspE) and BbA68-families of lipoproteins. In earlier studies, only serum-resistant strains of the genospecies B. burgdorferi sensu stricto or B.
View Article and Find Full Text PDFFactor H and factor H-like protein 1 (FH/FHL-1) are soluble serum proteins that negatively regulate the alternative pathway of complement. It is now well recognized that many pathogenic bacteria, including Borrelia burgdorferi, bind FH/FHL-1 on their cell surface to evade complement-mediated destruction during infection. Recently, it was suggested that B.
View Article and Find Full Text PDF