Two compatible organometallic complexes, W(Me) (1) and TiNp (2), were successively anchored on a highly dehydroxylated single silica support (SiO) to synthesize the well-defined bimetallic precatalyst [(≡Si-O-)W(Me)(≡Si-O-)Ti(Np)] (4). Precatalyst 4 was characterized at the molecular level using advanced surface organometallic chemistry (SOMC) characterization techniques. The strong autocorrelation observed between methyl of W and Ti in H-H multiple-quantum NMR spectra demonstrates that W and Ti species are in close proximity to each other.
View Article and Find Full Text PDFA method for the synthesis of a homogeneous cationic tungsten(vi)pentamethyl complex [(WMe)(CF)BMe] from neutral tungstenhexamethyl (WMe) and a silica supported cationic tungstentetramethyl complex [([triple bond, length as m-dash]Si-O-)WMe (CF)BMe] from a neutral silica supported tungstenpentamethyl complex [([triple bond, length as m-dash]Si-O-)WMe] is described. In both cases a direct demethylation using the B(CF) reagent was used. The aforesaid complexes were characterized by liquid or solid state NMR spectroscopy.
View Article and Find Full Text PDFA well-defined, silica-supported bimetallic precatalyst [≡Si-O-W(Me)5≡Si-O-Zr(Np)3] (4) has been synthesized for the first time by successively grafting two organometallic complexes [W(Me)6 (1) followed by ZrNp4 (2)] on a single silica support. Surprisingly, multiple-quantum NMR characterization demonstrates that W and Zr species are in close proximity to each other. Hydrogenation of this bimetallic catalyst at room temperature showed the easy formation of zirconium hydride, probably facilitated by tungsten hydride which was formed at this temperature.
View Article and Find Full Text PDFSecondary interactions are demonstrated to direct the stability of well-defined Ru-NHC-based heterogeneous alkene metathesis catalysts. By providing key stabilization of the active sites, higher catalytic performance is achieved. Specifically, they can be described as interactions between the metal center (active site) and the surface functionality of the support, and they have been detected by surface-enhanced (1)H-(29)Si NMR spectroscopy of the ligand and (31)P solid-state NMR of the catalyst precursor.
View Article and Find Full Text PDFDissymmetry for selectivity: NHC ligand with two different pendant group allows the selective formation of cyclic oligomers in place of polymers opening new strategy to generate macrocycles.
View Article and Find Full Text PDF