Publications by authors named "Santosh K Misra"

The quality of food, pharmaceutical, or sustainability products is generally maintained through optimal storage conditions or the use of packaging films. Herein, an intrinsically antibacterial and improvised polylactic acid-based film (-PLA-film) has been produced by introducing a microwave-assisted synthesis process of carbon nanoparticles produced from hemp fibers (CNPs). These high-performance packaging (-PLA) films were produced with different percentages of loaded CNPs, i.

View Article and Find Full Text PDF

Polymer carbon composites have been reported for improved mechanical, thermal and electrical properties to provide reduced side effect by 3D printing personalized biomedical drug delivery devices. But control on homogeneity in loading and release of dopants like carbon allotropes and drugs, respectively, in the bulk and on the surface has always been a challenge. Herein, we are reporting a methodological cascade to achieve a model, customizable, 3D printed, homogeneously layered and electrically stimulatory, PLA-Graphene nanoplatelet (-PLGR) based drug delivery device, called 3D--MediPatch.

View Article and Find Full Text PDF

The emergence of multidrug resistance in cancer cells necessitates the development of new therapeutic modalities. One way cancer cells orchestrate energy metabolism and redox homeostasis is through overloaded iron pools directed by iron regulatory proteins, including transferrin. Here, we demonstrate that targeting redox homeostasis using nitrogen-based heterocyclic iron chelators and their iron complexes efficiently prevents the proliferation of liver cancer cells (EC: 340 nM for IITK4003) and liver cancer 3D spheroids.

View Article and Find Full Text PDF

Extensive modifications have been made to the synthesis protocol for porous silica particles to improve the shape, size and yield percentage, but problems associated with improvement in biodegradability and decrease in chances to induce side effects still remain a concern. To circumvent these limitations, a facile modification strategy has been employed through carbonization of porous silica particles. Herein, carbon particles were integrated within porous silica core-shell particles (Si-P-CNPs) during the synthesis process and found to preserve the ordered structural morphology.

View Article and Find Full Text PDF

Research laboratories generate a broad range of hazardous pharmacophoric chemical contaminants, from drugs to dyes used during various experimental procedures. In the recent past, biological methods have demonstrated great potential in the remediation of such contaminants. However, the presence of pharmacophoric chemicals containing antibiotics, xenobiotics, and heavy metals suppresses the growth and survivability of used microbial agents, thus decreasing the overall efficiency of biological remediation processes.

View Article and Find Full Text PDF

The improper disposal of hospital waste products containing genetic materials poses a serious safety threat. We present herein an environmentally friendly technology using a graphene-based novel carbon-allotropic surface to remediate such wastes. The used carbon-allotrope is decorated with an enediyne (EDE-1) enriched aromatic pi-conjugated structure to create an efficient and active surface for cleaving DNA strands.

View Article and Find Full Text PDF

Mechanical damages to skeletal muscles could be detrimental to the active work hours and lifestyle of athletes, mountaineers, and security personnel. In this regard, the slowness of conventional treatment strategies and drug-associated side effects greatly demand the design and development of novel biomaterials, which can rescue such mechanically damaged skeletal muscles. To accomplish this demand, we have developed a musculoresponsive polymer-carbon composite for assisting myotubular regeneration (MusCAMLR).

View Article and Find Full Text PDF

The elevated glutathione (GSH) level in cancer cells contributes to the poor response to chemotherapy and necessitates the use of maximum tolerated drug doses, leading to myriad side effects. We have developed a biocompatible and fluorescently trackable nanosystem, iron(III)-bound nanocarbonaceous polyphenol (FeNCP), to modulate the available GSH pool in cancer cells for synergistic effects in treatments with a cytotoxic anticancer drug, doxorubicin (Dox). This nanosystem was designed using a nanoscale carbon system as a platform to generate a GSH-responsive gallic acid-iron complex.

View Article and Find Full Text PDF

Dysfunction in the macrophage lysosomal system including reduced acidity and diminished degradative capacity is a hallmark of atherosclerosis, leading to blunted clearance of excess cellular debris and lipids in plaques and contributing to lesion progression. Devising strategies to rescue this macrophage lysosomal dysfunction is a novel therapeutic measure. Nanoparticles have emerged as an effective platform to both target specific tissues and serve as drug delivery vehicles.

View Article and Find Full Text PDF

Heart failure or myocardial infarction (MI) is one of the world's leading causes of death. Post MI, the heart can develop pathological conditions such as ischemia, inflammation, fibrosis, and left ventricular dysfunction. However, current surgical approaches are sufficient for enhancing myocardial perfusion but are unable to reverse the pathological changes.

View Article and Find Full Text PDF

Gastrointestinal (GI) tract is one of the hard-to-reach target tissues for the delivery of contrast agents and drugs mediated by nanoparticles due to its harsh environment. Herein, we overcame this barrier by designing orally ingestible probiotic vectors for 'hitchhiking' ultrasmall hafnia (HfO) (∼1-2 nm) nanoparticles. The minute-made synthesis of these nanoparticles is accomplished through a simple reduction reaction.

View Article and Find Full Text PDF

Carbon materials are generally utilized in the form of carbon allotropes and their characteristics are exploited as such or for improving the thermal, electrical, optical, and mechanical properties of other biomaterials. This has now found a broader share in conventional biomaterial space with the generation of nanodiamond, carbon dot, carbon nanoparticles (CNPs), and so forth. With properties of better biocompatibility, intrinsic optical emission, aqueous suspendability, and easier surface conjugation possibilities made CNPs as one of the fore most choice for biological applications especially for use in intracellular spaces.

View Article and Find Full Text PDF

Effective outcome from dynamic live-cell-imaging requires utilization of a probe with high emission intensity and low photobleaching. It would be preferable to achieve such properties at a low power of the applied laser to avoid any probable damage to biological cells or tissue. Most of the used small-molecule fluorophores have been reported to show significant photobleaching in a time-dependent manner and require high laser power to gain significant intensity for bioimaging.

View Article and Find Full Text PDF

Recent scientific findings have correlated the gut microbes with homeostasis of human health by delineating their role in pathogen resistance, bioactive metabolization, and immune responses. Foreign materials, like xenobiotics, that induce an altering effect to the human body also influence the gut microbiome to some extent and often limit their use as a result of significant side effects. Investigating the xenobiotic effect of new therapeutic material or edible could be quite painstaking and economically non-viable.

View Article and Find Full Text PDF

A new pH-responsive cationic co-liposomal formulation was prepared in this study using the twin version of the amphiphile palmitoyl homocysteine, TPHC; natural zwitterionic lipid, DOPE; and cholesterol-based twin cationic lipid, C5C, at specified molar ratios. This co-liposome was further decorated with a newly designed fluorescently tagged, cholesterol-tethered EpCAM-targeting RNA aptamer for targeted gene delivery. This aptamer-guided nanoliposomal formulation, C5C/DOPE/TPHC at 8:24:1 molar ratio, could efficiently transport the genes in response to low pH of cellular endosomes selectively to the EpCAM overexpressing cancer stem cells.

View Article and Find Full Text PDF

A liposomal formulation comprising a dicationic cholesterol based lipid, Chol-(CH)-Chol, and a helper zwitterionic lipid, DOPE (1:4), was prepared to deliver polynucleotides of different topologies, molecular weights, and backbones. This formulation was used to transfect HeLa cells with circular and linearized plasmid pEGFP-C3. The transfection efficiency of the dicationic cholesterol based coliposomal formulation Chol-(CH)-Chol/DOPE (1:4) was observed to be better when compared against different commercial delivery agents, Lipofectamine2000, Effectene, and a known oligonucleotide delivery agent, Oligofectamine.

View Article and Find Full Text PDF

Ocular drug delivery has always been a challenging feat to achieve in the field of medical sciences. One of the existing methods of non-invasive ocular drug delivery is the use of eye drops. However, drugs administered through these formulations have low bioavailability in the ocular system.

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) have applications in numerous fields. However, the development of MOF-based "theranostic" macroscale devices is not achieved. Here, heparin-coated biocompatible MOF/poly(ε-caprolactone) (PCL) "theranostic" stents are developed, where NH -Materials of Institute Lavoisier (MIL)-101(Fe) encapsulates and releases rapamycin (an immunosuppressive drug).

View Article and Find Full Text PDF

By using complementary DNA sequences as surface ligands, we selectively allow two individual diffusing "dual-color" carbon dots to interact and . Spontaneous nanoscale oxidation of surface-abundant nitroso-/nitro-functionalities leads to two distinctly colored carbon dots (CD) which are isolated by polarity driven chromatographic separation. Green- and red-emitting carbon dots (gCD and rCD) were decorated by complementary single-stranded DNAs which produce a marked increase in the fluorescence emission of the respective carbon dots.

View Article and Find Full Text PDF

Photoacoustic imaging has emerged as a promising imaging platform with a high tissue penetration depth. However, biodegradable nanoparticles, especially those for photoacoustic imaging, are rare and limited to a few polymeric agents. The development of such nanoparticles holds great promise for clinically translatable diagnostic imaging with high biocompatibility.

View Article and Find Full Text PDF

Transcription factor STAT3 has been shown to regulate genes that are involved in stem cell self-renewal and thus represents a novel therapeutic target of great biological significance. However, many small-molecule agents with potential effects through STAT3 modulation in cancer therapy lack aqueous solubility and high off-target toxicity, hence impeding efficient bioavailability and activity. This work, for the first time, reports a prodrug-based strategy for selective and safer delivery of STAT3 inhibitors designed toward metastatic and drug-resistant breast cancer.

View Article and Find Full Text PDF

In this work, an ultra-sensitive electrochemical-digital sensor chip is devised for potential use as a digital stress analyzer for point-of-care testing (POCT) and preventive on-site recording of the hormone 'cortisol', a glucocorticoid class of steroid hormone present in the human saliva. The sensor was interfaced and re-configured with a high precision impedance converter system (AD5933) and used for electrochemical impedance spectroscopy (EIS) to evaluate the cortisol levels in seven saliva samples. To obtain enhanced biological (cortisol) recognition and achieve a lower limit of detection 0.

View Article and Find Full Text PDF

Sarcomas are rare and heterogeneous cancer variants of mesenchymal origin. Their genetic heterogeneity coupled with uncertain histogenesis makes them difficult to treat and results in poor prognosis. In this work, we show that structure-based drug discovery involving computational modeling can be used to identify a new retinoid X receptor (RXR) agonist ligand with a bis(indolyl)methane scaffold.

View Article and Find Full Text PDF

Manipulating the chiroptical properties at the nanoscale is of great importance in stereoselective reactions, enantioseparation, self-assembly, and biological phenomena. In recent years, carbon dots have garnered great attention because of their favorable properties such as tunable fluorescence, high biocompatibility, and facile, scalable synthetic procedures. Herein, we report for the first time the unusual behavior of cyclic amino acids on the surface of carbon dots prepared via microwave-based carbonization.

View Article and Find Full Text PDF