Publications by authors named "Santosh K Ghosh"

There is an unmet clinical need for a non-invasive and cost-effective test for oral squamous cell carcinoma (OSCC) that informs clinicians when a biopsy is warranted. Human beta-defensin 3 (hBD-3), an epithelial cell-derived anti-microbial peptide, is pro-tumorigenic and overexpressed in early-stage OSCC compared to hBD-2. We validate this expression dichotomy in carcinoma in situ and OSCC lesions using immunofluorescence microscopy and flow cytometry.

View Article and Find Full Text PDF
Article Synopsis
  • Platelets, traditionally known for their role in blood clotting (hemostasis), are now understood to also contribute to immune defense, particularly through the presence of hBD-3, an antimicrobial peptide.
  • Research techniques like immunofluorescent microscopy and ELISA revealed that hBD-3 is found in human platelets and is released in vesicles after platelet activation, suggesting a role in platelet behavior and immune response.
  • The study indicates that hBD-3 can enhance endothelial dysfunction and platelet activation, potentially linking immune responses with clot formation and contributing to a pro-thrombotic environment.
View Article and Find Full Text PDF

New approaches to complement vaccination are needed to combat the spread of SARS-CoV-2 and stop COVID-19-related deaths and medical complications. Human beta defensin 2 (hBD-2) is a naturally occurring epithelial cell-derived host defense peptide that has anti-viral properties. Our comprehensive studies demonstrate that hBD-2 binds the site on the CoV-2-RBD that docks with the ACE2 receptor.

View Article and Find Full Text PDF

Human-derived antimicrobial peptides (AMPs), such as defensins and cathelicidin LL-37, are members of the innate immune system and play a crucial role in early pulmonary defense against viruses. These AMPs achieve viral inhibition through a variety of mechanisms including, but not limited to, direct binding to virions, binding to and modulating host cell-surface receptors, blocking viral replication, and aggregation of viral particles and indirectly by functioning as chemokines to enhance or curb adaptive immune responses. Given the fact that we are in a pandemic of unprecedented severity and the urgent need for therapeutic options to combat severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), naturally expressed AMPs and their derivatives have the potential to combat coronavirus disease 2019 (COVID-19) and impede viral infectivity in various ways.

View Article and Find Full Text PDF

New approaches to complement vaccination are needed to combat the spread of SARS-CoV-2 and stop COVID-19 related deaths and long-term medical complications. Human beta defensin 2 (hBD-2) is a naturally occurring epithelial cell derived host defense peptide that has antiviral properties. Our comprehensive studies demonstrate that hBD-2 binds the site on the CoV-2-RBD that docks with the ACE2 receptor.

View Article and Find Full Text PDF
Article Synopsis
  • Human beta-defensins (hBDs) are antimicrobial peptides produced by epithelial cells that protect mucosal membranes and also play roles in various biological processes such as wound healing and inflammation.
  • Research shows that the levels of hBDs change in different cancers, but the results are inconsistent, particularly for oral squamous cell carcinoma (OSCC), leading to challenges in understanding their specific roles.
  • Findings suggest that hBD-1 and hBD-2 are often down-regulated while hBD-3 is up-regulated in OSCC, emphasizing the need for context-specific studies on hBD dysregulation to potentially use them as biomarkers or therapeutic targets in cancer treatment.
View Article and Find Full Text PDF

Human beta defensins (hBDs) are small cationic peptides, expressed in mucosal epithelia and important agents of innate immunity, act as antimicrobial and chemotactic agents at mucosal barriers. In this perspective, we present evidence supporting a novel strategy by which the oral bacterium induces hBDs and other antimicrobial peptides (AMPs) in normal human oral epithelial cells (HOECs) and thereby protects them from other microbial pathogens. The findings stress (1) the physiological importance of hBDs, (2) that this strategy may be a mechanism that contributes to homeostasis and health in body sites constantly challenged with bacteria and (3) that novel properties identified in commensal bacteria could, one day, be harnessed as new probiotic strategies to combat colonization of opportunistic pathogens.

View Article and Find Full Text PDF

Tumor associated macrophages (TAMs) promote angiogenesis, tumor invasion and metastasis, and suppression of anti-tumor immunity. These myeloid cells originate from monocytes, which differentiate into TAMs upon exposure to the local tumor microenvironment. We previously reported that Kaposi's sarcoma-associated herpes virus (KSHV) infection of endothelial cells induces the cytokine angiopoietin-2 (Ang-2) to promote migration of monocytes into tumors.

View Article and Find Full Text PDF

Fusobacteria are found to be overrepresented in the colorectal tumor microenvironment. In this issue of Cell Host & Microbe, Abed et al. (2016) describe a novel homing mechanism by which fusobacteria localize to tumors by recognizing a host polysaccharide (Gal-GalNAc) on cancer cells using a fusobacterial lectin, Fap2.

View Article and Find Full Text PDF

Kaposi's sarcoma (KS) is a highly angiogenic and inflammatory neoplasia. The angiogenic and inflammatory cytokine angiopoietin-2 (Ang-2) is strongly expressed in KS due to Kaposi's sarcoma-associated herpesvirus (KSHV) infection. In the present study, we determined how Ang-2 contributes to development of KS by using telomerase-immortalized human umbilical vein endothelial cells (TIVE) as a model, which become malignantly transformed and express increased levels of Ang-2 following KSHV infection.

View Article and Find Full Text PDF

Human β-defensin-3 (hBD3) is an epithelial cell-derived innate immune regulatory molecule overexpressed in oral dysplastic lesions and fosters a tumor-promoting microenvironment. Expression of hBD3 is induced by the epidermal growth factor receptor signaling pathway. Here we describe a novel pathway through which the high-risk human papillomavirus type-16 (HPV-16) oncoprotein E6 induces hBD3 expression in mucosal keratinocytes.

View Article and Find Full Text PDF

We previously identified a cell wall-associated protein from Fusobacterium nucleatum, a Gram-negative bacterium of the oral cavity, that induces human beta defensin 2 (hBD-2) in primary human oral epithelial cells (HOECs) and designated it FAD-I (Fusobacterium-associated defensin inducer). Here, we report differential induction of hBD-2 by different strains of F. nucleatum; ATCC 25586 and ATCC 23726 induce significantly more hBD-2 mRNA than ATCC 10953.

View Article and Find Full Text PDF

Cystic fibrosis (CF) is a genetic disease in which the battle between pulmonary infection and inflammation becomes the major cause of morbidity and mortality. We have previously shown that human MSCs (hMSCs) decrease inflammation and infection in the in vivo murine model of CF. The studies in this paper focus on the specificity of the hMSC antimicrobial effectiveness using Pseudomonas aeruginosa (gram negative bacteria) and Staphylococcus aureus (gram positive bacteria).

View Article and Find Full Text PDF

Background: Beta-defensins (hBDs) provide antimicrobial and chemotactic defense against bacterial, viral and fungal infections. Human β-defensin-2 (hBD-2) acts against gram-negative bacteria and chemoattracts immature dendritic cells, thus regulating innate and adaptive immunity. Immunosuppression due to hyperglycemia underlies chronic infection in Type 2 diabetes.

View Article and Find Full Text PDF

Currently, Acinetobacter baumannii is recognized as one of the major pathogens seriously threatening our health care delivery system. Aspects of the innate immune response to A. baumannii infection are not yet well understood.

View Article and Find Full Text PDF

HIV-infected subjects on highly active antiretroviral therapy (HAART) are susceptible to comorbid microbial infections in the oral cavity. We observed that primary oral epithelial cells (POECs) isolated from HIV+ subjects on HAART grow more slowly and are less innate immune responsive to microbial challenge when compared with POECs from normal subjects. These aberrant cells also demonstrate epigenetic differences that include reduction in histone deacetylase 1 (HDAC-1) levels and reduced total DNA methyltransferase (DNMT) activity specific to enzymes DNMT1 and DNMT3A.

View Article and Find Full Text PDF

Background: Antimicrobial peptides (AMPs) maintain a sterile environment in intestinal crypts, limiting microbial colonization and invasion. Decreased AMP expression is proposed to increase the risk for inflammatory bowel disease. Expression and function of inducible AMPs, human β-defensin 2 and 3 (hBD-2 and hBD-3), remain poorly characterized in healthy and chronically inflamed intestine.

View Article and Find Full Text PDF

Wounding of the oral mucosa occurs frequently in a highly septic environment. Remarkably, these wounds heal quickly and the oral cavity, for the most part, remains healthy. Deciphering the normal human oral epithelial cell (NHOEC) proteome is critical for understanding the mechanism(s) of protection elicited when the mucosal barrier is intact, as well as when it is breached.

View Article and Find Full Text PDF

Beta defensins are antimicrobial peptides that serve to protect the host from microbial invasion at skin and mucosal surfaces. Here we explore the relationships among beta defensin levels, total bacterial colonization, and colonization by bacterial vaginosis (BV)-related bacteria and lactobacilli in the female genital tract in HIV infected women and healthy controls. Cervicovaginal lavage (CVL) samples were obtained from 30 HIV-infected women and 36 uninfected controls.

View Article and Find Full Text PDF

The oral epithelium, the most abundant structural tissue lining the oral mucosa, is an important line of defense against infectious microorganisms. HIV infected subjects on highly active antiretroviral therapy (HAART) are susceptible to comorbid viral, bacterial and fungal infections in the oral cavity. To provide an assessment of the molecular alterations of oral epithelia potentially associated with susceptibility to comorbid infections in such subjects, we performed various proteomic studies on over twenty HIV infected and healthy subjects.

View Article and Find Full Text PDF

Cells of the innate immune system regulate immune responses through the production of antimicrobial peptides, chemokines, and cytokines, including human beta-defensins (hBDs) and CCL20. In this study, we examined the kinetics of primary human oral epithelial cell (HOEC) production of CCL20 and hBDs in response to Fusobacterium nucleatum, a commensal bacterium of the oral cavity, which we previously showed promotes HOEC induction of hBDs. HOECs secrete maximal levels of CCL20 at 6 h, following stimulation by F.

View Article and Find Full Text PDF

Although the mechanism of accumulation of C8-C16 saturated fatty acids in seed oils has been well-studied, the control of stearic (C18:0) acid deposition in high stearate seed fat is still unclear. We investigated the mechanism that regulates high level of stearate and oleate (C18:1) accumulation in mango (Mangifera indica) seeds during its development, and examined the seed plastid extracts for induction of any specialized fatty acyl-ACP thioesterase (Fat) that may control this high level of deposition. Though the specificity of the Fat enzymes does not account directly for the fatty acid composition of mango seeds, our result suggested that an induced synthesis of a FatA type of thioesterase could be responsible for the high content of oleate and stearate in its seed fat.

View Article and Find Full Text PDF

Human β-defensins (hBDs) are small, cationic antimicrobial peptides, secreted by mucosal epithelial cells that regulate adaptive immune functions. We previously reported that Fusobacterium nucleatum, a ubiquitous gram-negative bacterium of the human oral cavity, induces human β-defensin 2 (hBD2) upon contact with primary oral epithelial cells. We now report the isolation and characterization of an F.

View Article and Find Full Text PDF

Background: Tumor-associated macrophages (TAMs) constitute a significant part of infiltrating inflammatory cells that are frequently correlated with progression and poor prognosis of a variety of cancers. Tumor cell-produced human beta-defensin-3 (hBD-3) has been associated with TAM trafficking in oral cancer; however, its involvement in tumor-related inflammatory processes remains largely unknown.

Methodology: The relationship between hBD-3, monocyte chemoattractant protein-1 (MCP-1), TAMs, and CCR2 was examined using immunofluorescence microscopy in normal and oral carcinoma in situ biopsy specimens.

View Article and Find Full Text PDF

Human beta-defensin-2 (hBD-2) is a small cationic peptide originally identified from psoriatic skin lesions as an antimicrobial agent of the innate immune system. The expression of hBD-2 is believed to be induced exclusively in epithelial cells by microbial components and certain proinflammatory cytokines, such as interleukin-1 beta (IL-1 beta). In this study, we report, for the first time, that hBD-2 is expressed in vascular endothelial cells associated with oral squamous cell carcinoma (OSCC) and Kaposi's sarcoma lesions, but not in that of normal stroma.

View Article and Find Full Text PDF