Grassland landscapes are important ecosystems in East Africa, providing habitat and grazing grounds for wildlife and livestock and supporting pastoralism, an essential part of the agricultural sector. Since future grassland availability directly affects the future mobility needs of pastoralists and wildlife, we aim to model changes in the distribution of key grassland species under climate change. Here we combine a global and regional climate model with a machine learning-based species distribution model to understand the impact of regional climate change on different key grass species.
View Article and Find Full Text PDFIn this study, we hypothesized that shifts in the kinetic parameters of extracellular hydrolytic enzymes may occur as a consequence of seasonal environmental disturbances and would reflect the level of adaptation of the bacterial community to the organic matter of the ecosystem. We measured the activities of enzymes that play a key role in the bacterial growth (leucine aminopeptidase, β- and α-glucosidases) in surface coastal waters of the Eastern Cantabrian Sea and determined their kinetic parameters by computing kinetic models of distinct complexity. Our results revealed the existence of two clearly distinct enzymatic systems operating at different substrate concentrations: a high-affinity system prevailing at low substrate concentrations and a low-affinity system characteristic of high substrate concentrations.
View Article and Find Full Text PDF