We here simulate in the gas phase the population dynamics of guanine/cytosine (GC) and cytosine/guanine (CG) stacked dimers in B-DNA and A-DNA arrangement, following excitation in the lowest-energy band, and considering the four lowest-energy ππ* bright excited states, the three lowest-energy π* states, and the G → C charge-transfer (CT) state. We resort to a generalized Linear Vibronic Coupling (LVC) model parametrized with time-dependent density functional theory (TD-DFT) computations, exploiting a fragment-based diabatization and we run nonadiabatic quantum dynamical simulations with the multilayer version of the Multiconfigurational Time-Dependent Hartree (ML-MCTDH) approach. G → C CT results in a major decay process for GC in B-DNA but less in A-DNA arrangement, where also the population transfer to the lowest-energy excited state localized on C is an important intermonomer process.
View Article and Find Full Text PDFIntracellular electrophysiology is essential in neuroscience, cardiology, and pharmacology for studying cells' electrical properties. Traditional methods like patch-clamp are precise but low-throughput and invasive. Nanoelectrode Arrays (NEAs) offer a promising alternative by enabling simultaneous intracellular and extracellular action potential (iAP and eAP) recordings with high throughput.
View Article and Find Full Text PDFBackground: It is crucial to distinguish type-1 myocardial infarction (T1MI) from type-2 myocardial infarction (T2MI) at admission and during hospitalization to avoid unnecessary invasive exams and inappropriate admissions to the acute cardiac care unit.
Objectives: The purpose of the study was to define a simple profile derived from commonly used biomarkers to differentiate T1MI from T2MI.
Methods: We prospectively enrolled in an observational study 213 iconsecutive patients with a provisional diagnosis of non-ST-elevation acute myocardial infarction (NSTEMI) admitted to the Cardiology Department.
The integration of organic electronic materials with biological systems to monitor, interface with, and regulate physiological processes is a key area in the field of bioelectronics. Central to this advancement is the development of cell-chip coupling, where materials engineering plays a critical role in enhancing biointerfacing capabilities. Conductive polymers have proven particularly useful in cell interfacing applications due to their favorable biophysical and chemical properties.
View Article and Find Full Text PDFThe brain integrates activity across networks of interconnected neurons to generate behavioral outputs. Several physiological and imaging-based approaches have been previously used to monitor responses of individual neurons. While these techniques can identify cellular responses greater than the neuron's action potential threshold, less is known about the events that are smaller than this threshold or are localized to subcellular compartments.
View Article and Find Full Text PDFBackground: Extensive myocardial edema is a key feature of acute takotsubo syndrome (TTS) and it can be quantitatively assessed by T2 mapping cardiac magnetic resonance (CMR) imaging. Clinical correlates of myocardial edema in TTS are not well characterized.
Methods: Sixty patients with acute TTS underwent CMR with T2 mapping within one week of hospitalization.
Estimation of cochlear length is gaining attention in the field of cochlear implants (CIs), mainly for selecting of CI electrode lengths. The currently available tools to estimate the cochlear duct length (CDL) are only valid for normal inner anatomy. However, inner ear malformation (IEM) types are associated with different degrees of cystic apices, limiting the application of CDL equations of normal anatomy inner ear.
View Article and Find Full Text PDFWe report the resolution of a long-standing puzzle in molecular spectroscopy: the origin of the shoulder in the room temperature solution absorption spectrum of crystal violet (CV) - an archetypal cationic triphenylmethane dye. This was achieved by comparing experimental and theoretical results for CV in solution at room temperature and as an isolated cation in gas-phase at 5 K. The two lowest energy electronically excited states involved in the visible region absorption are degenerate and coupled a Jahn-Teller (JT) mechanism involving phenyl torsions, making CV particularly sensitive to environmental perturbations.
View Article and Find Full Text PDFThe development of organic artificial synapses that exhibit biomimicry features also may enable a more seamless integration of neuroelectronic devices in the nervous system, allowing artificial neuromodulation to be perceived as natural behavior by neuronal cells. Nevertheless, the capability to interact with both electroactive and non-electroactive neurotransmitters remains a challenge since state-of-the-art devices mainly rely on the oxidation of electroactive species. Here, the study proposes an organic artificial synapse engineered to enable interaction with non-electroactive species present in the central nervous system.
View Article and Find Full Text PDFIn recent years, there has been a growing interest in exploring the non-classical symptoms of multiple sclerosis (MS), with a particular focus on cognitive impairments associated with the disease's progression. These cognitive symptoms are now recognized as crucial elements in the assessment of disease activity. In this context, neurophysiology has emerged as a valuable and accessible tool for studying and addressing cognitive decline in individuals with MS.
View Article and Find Full Text PDFContact sites between the endoplasmic reticulum (ER) and plasma membrane (PM) play a crucial role in governing calcium regulation and lipid homeostasis. Despite their significance, the factors regulating their spatial distribution on the PM remain elusive. Inspired by observations in cardiomyocytes, where ER-PM contact sites concentrate on tubular PM invaginations known as transverse tubules, we hypothesize that PM curvature plays a role in ER-PM contact formation.
View Article and Find Full Text PDFThe present work reports the development and validation of a chromosomal expression system in Streptococcus pneumoniae which permits gene expression under the control of Lactococcus lactis lantibiotic nisin. The system is based on the integrative and conjugative element (ICE) Tn5253 of S. pneumoniae capable of site-specific chromosomal integration and conjugal transfer to a variety of bacterial species.
View Article and Find Full Text PDFBackground: Few data are available on long-term drug therapy and its potential prognostic impact after Takotsubo syndrome (TTS). Aim of the study is to evaluate clinical characteristics and long-term outcome of TTS patients on Renin Angiotensin system inhibitors (RASi).
Methods: TTS patients were enrolled in the international multicenter GEIST (GErman Italian Spanish Takotsubo) registry.
, a pathogen capable of causing diseases ranging from mild to life-threatening, has a large arsenal of virulence factors. Notably, extracellular vesicles have emerged as significant players in the pathogenesis of this organism. However, the full range of their functions is still being studied, and difficulties related to vesicle purification (long protocols, low yields, and specialized instruments) have become a major obstacle for their characterization.
View Article and Find Full Text PDFAquaporin-4 antibody-positive neuromyelitis optica spectrum disorder (AQP4-NMOSD) is an autoimmune disease characterized by suboptimal recovery from attacks and long-term disability. Experimental data suggest that AQP4 antibodies can disrupt neuroplasticity, a fundamental driver of brain recovery. A well-established method to assess brain LTP is through intermittent theta-burst stimulation (iTBS).
View Article and Find Full Text PDF