Publications by authors named "Santo Fortunato"

Single cell RNA-seq (scRNA-seq) technologies provide unprecedented resolution representing transcriptomics at the level of single cell. One of the biggest challenges in scRNA-seq data analysis is the cell type annotation, which is usually inferred by cell separation approaches. In-silico algorithms that accurately identify individual cell types in ongoing single-cell sequencing studies are crucial for unlocking cellular heterogeneity and understanding the biological basis of diseases.

View Article and Find Full Text PDF

Recent advances in machine learning research have produced powerful neural graph embedding methods, which learn useful, low-dimensional vector representations of network data. These neural methods for graph embedding excel in graph machine learning tasks and are now widely adopted. However, how and why these methods work-particularly how network structure gets encoded in the embedding-remain largely unexplained.

View Article and Find Full Text PDF

Graph embeddings learn the structure of networks and represent it in low-dimensional vector spaces. Community structure is one of the features that are recognized and reproduced by embeddings. We show that an iterative procedure, in which a graph is repeatedly embedded and its links are reweighted based on the geometric proximity between the nodes, reinforces intra-community links and weakens inter-community links, making the clusters of the initial network more visible and more easily detectable.

View Article and Find Full Text PDF

Engineering multilayer networks that efficiently connect sets of points in space is a crucial task in all practical applications that concern the transport of people or the delivery of goods. Unfortunately, our current theoretical understanding of the shape of such optimal transport networks is quite limited. Not much is known about how the topology of the optimal network changes as a function of its size, the relative efficiency of its layers, and the cost of switching between layers.

View Article and Find Full Text PDF

Collaboration is a key driver of science and innovation. Mainly motivated by the need to leverage different capacities and expertise to solve a scientific problem, collaboration is also an excellent source of information about the future behavior of scholars. In particular, it allows us to infer the likelihood that scientists choose future research directions via the intertwined mechanisms of selection and social influence.

View Article and Find Full Text PDF

The problem of influence maximization, i.e., finding the set of nodes having maximal influence on a network, is of great importance for several applications.

View Article and Find Full Text PDF

A basic question in network community detection is how modular a given network is. This is usually addressed by evaluating the quality of partitions detected in the network. The Girvan-Newman (GN) modularity function is the standard way to make this assessment, but it has a number of drawbacks.

View Article and Find Full Text PDF

Graph embedding methods are becoming increasingly popular in the machine learning community, where they are widely used for tasks such as node classification and link prediction. Embedding graphs in geometric spaces should aid the identification of network communities as well because nodes in the same community should be projected close to each other in the geometric space, where they can be detected via standard data clustering algorithms. In this paper, we test the ability of several graph embedding techniques to detect communities on benchmark graphs.

View Article and Find Full Text PDF

Detection of community structure has become a fundamental step in the analysis of biological networks with application to protein function annotation, disease gene prediction, and drug discovery. This recent impact creates a need to make these techniques and their accompanying visualization schemes available to a broad range of biologists. Here we present a service-oriented, end-to-end software framework, CDAPS (Community Detection APplication and Service), that integrates the identification, annotation, visualization, and interrogation of multiscale network communities, accessible within the popular Cytoscape network analysis platform.

View Article and Find Full Text PDF

Throughout history, a relatively small number of individuals have made a profound and lasting impact on science and society. Despite long-standing, multi-disciplinary interests in understanding careers of elite scientists, there have been limited attempts for a quantitative, career-level analysis. Here, we leverage a comprehensive dataset we assembled, allowing us to trace the entire career histories of nearly all Nobel laureates in physics, chemistry, and physiology or medicine over the past century.

View Article and Find Full Text PDF

Algorithms for community detection are usually stochastic, leading to different partitions for different choices of random seeds. Consensus clustering has proven to be an effective technique to derive more stable and accurate partitions than the ones obtained by the direct application of the algorithm. However, the procedure requires the calculation of the consensus matrix, which can be quite dense if (some of) the clusters of the input partitions are large.

View Article and Find Full Text PDF

A central question in the science of science concerns how to develop a quantitative understanding of the evolution and impact of individual careers. Over the course of history, a relatively small fraction of individuals have made disproportionate, profound, and lasting impacts on science and society. Despite a long-standing interest in the careers of scientific elites across diverse disciplines, it remains difficult to collect large-scale career histories that could serve as training sets for systematic empirical and theoretical studies.

View Article and Find Full Text PDF

Alzheimer's disease is considered a disconnection syndrome, motivating the use of brain network measures to detect changes in whole-brain resting state functional connectivity (FC). We investigated changes in FC within and among resting state networks (RSN) across four different stages in the Alzheimer's disease continuum. FC changes were examined in two independent cohorts of individuals (84 and 58 individuals, respectively) each comprising control, subjective cognitive decline, mild cognitive impairment and Alzheimer's dementia groups.

View Article and Find Full Text PDF

The endbrain (telencephalon) is at the rostral end of the central nervous system and is primarily responsible for supporting cognition and affect. Structurally, it consists of right and left cerebral hemispheres, each parceled into multiple cortical and nuclear gray matter regions. The global network organization of axonal macroconnections between the 244 regions forming the endbrain was analyzed with a multiresolution consensus clustering (MRCC) method that provides a hierarchical description of community clustering (modules or subsystems) within the network.

View Article and Find Full Text PDF

Identifying fundamental drivers of science and developing predictive models to capture its evolution are instrumental for the design of policies that can improve the scientific enterprise-for example, through enhanced career paths for scientists, better performance evaluation for organizations hosting research, discovery of novel effective funding vehicles, and even identification of promising regions along the scientific frontier. The science of science uses large-scale data on the production of science to search for universal and domain-specific patterns. Here, we review recent developments in this transdisciplinary field.

View Article and Find Full Text PDF

Networks often exhibit structure at disparate scales. We propose a method for identifying community structure at different scales based on multiresolution modularity and consensus clustering. Our contribution consists of two parts.

View Article and Find Full Text PDF

Major depressive disorder (MDD) is known to be associated with altered interactions between distributed brain regions. How these regional changes relate to the reorganization of cortical functional systems, and their modulation by antidepressant medication, is relatively unexplored. To identify changes in the community structure of cortical functional networks in MDD, we performed a multiscale community detection algorithm on resting-state functional connectivity networks of unmedicated MDD (uMDD) patients (n = 46), medicated MDD (mMDD) patients (n = 38), and healthy controls (n = 50), which yielded a spectrum of multiscale community partitions.

View Article and Find Full Text PDF

Most complex systems are intrinsically dynamic in nature. The evolution of a dynamic complex system is typically represented as a sequence of snapshots, where each snapshot describes the configuration of the system at a particular instant of time. This is often done by using constant intervals but a better approach would be to define dynamic intervals that match the evolution of the system's configuration.

View Article and Find Full Text PDF

Rotation dynamics of eigenvectors of modular network adjacency matrices under random perturbations are presented. In the presence of q communities, the number of eigenvectors corresponding to the q largest eigenvalues form a "community" eigenspace and rotate together, but separately from that of the "bulk" eigenspace spanned by all the other eigenvectors. Using this property, the number of modules or clusters in a network can be estimated in an algorithm-independent way.

View Article and Find Full Text PDF

We present a model for the growth of the transportation network inside nests of the social insect subfamily Termitinae (Isoptera, termitidae). These nests consist of large chambers (nodes) connected by tunnels (edges). The model based on the empirical analysis of the real nest networks combined with pruning (edge removal, either random or weighted by betweenness centrality) and a memory effect (preferential growth from the latest added chambers) successfully predicts emergent nest properties (degree distribution, size of the largest connected component, average path lengths, backbone link ratios, and local graph redundancy).

View Article and Find Full Text PDF

We propose a new multi-network-based strategy to integrate different layers of genomic information and use them in a coordinate way to identify driving cancer genes. The multi-networks that we consider combine transcription factor co-targeting, microRNA co-targeting, protein-protein interaction and gene co-expression networks. The rationale behind this choice is that gene co-expression and protein-protein interactions require a tight coregulation of the partners and that such a fine tuned regulation can be obtained only combining both the transcriptional and post-transcriptional layers of regulation.

View Article and Find Full Text PDF

Represented as graphs, real networks are intricate combinations of order and disorder. Fixing some of the structural properties of network models to their values observed in real networks, many other properties appear as statistical consequences of these fixed observables, plus randomness in other respects. Here we employ the dk-series, a complete set of basic characteristics of the network structure, to study the statistical dependencies between different network properties.

View Article and Find Full Text PDF

Detecting the time evolution of the community structure of networks is crucial to identify major changes in the internal organization of many complex systems, which may undergo important endogenous or exogenous events. This analysis can be done in two ways: considering each snapshot as an independent community detection problem or taking into account the whole evolution of the network. In the first case, one can apply static methods on the temporal snapshots, which correspond to configurations of the system in short time windows, and match afterward the communities across layers.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionujn51lst7dqscjjo33hpvk837u0c63aq): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once