Receptors for the vasoactive adipokine apelin, termed APJ receptors, are G-protein-coupled receptors and are widely expressed throughout the cardiovascular system. APJ receptors can also signal via G-protein-independent pathways, including G-protein-coupled-receptor kinase 2 (GRK2), which inhibits nitric oxide synthase (eNOS) activity and nitric oxide (NO) production in endothelial cells. Apelin causes endothelium-dependent, NO-mediated relaxation of coronary arteries from normotensive animals, but the effects of activating APJ receptor signaling pathways in hypertensive coronary arteries are largely unknown.
View Article and Find Full Text PDFApelin, an endogenous ligand for APJ receptors, causes nitric oxide (NO)-dependent relaxation of coronary arteries. Little is known about the effects of apelin/APJ receptor signaling in the coronary circulation under pathological conditions. Here, we tested the hypothesis that the vasorelaxing effect of apelin is impaired by cigarette smoke extract (CSE), an established model for second-hand smoke exposure.
View Article and Find Full Text PDFApelin has complex vasomotor actions inasmuch as the peptide may cause either vasodilation or vasoconstriction depending on the vascular bed and experimental conditions. In cerebral arteries, apelin inhibits endothelium-dependent relaxations mediated by nitric oxide (NO); however, its effects on relaxation to other endothelium-derived substances (e.g.
View Article and Find Full Text PDFJ Basic Clin Physiol Pharmacol
November 2016
Background: Smoking during pregnancy is associated with numerous fetal and developmental complications and reproductive dysfunctions in the offspring. Nicotine is one of the key chemicals of tobacco responsible for addiction. The present study was aimed to investigate the protective role of α-lipoic acid (ALA) during the transplacental nicotine-induced germ cell and DNA damage in the offspring of Swiss mice.
View Article and Find Full Text PDF