Publications by authors named "Santiago Rodriguez Ospina"

The accumulation and aggregation of the microtubule-associated protein tau (tau) into intracellular neuronal tangles are a hallmark of a range of progressive neurodegenerative tauopathies, including Alzheimer's disease (AD), frontotemporal dementia, Pick's disease, and progressive supranuclear palsy. The aberrant phosphorylation of tau is associated with tau aggregates in AD. Members of the heat shock protein 70 kDa (Hsp70) family of chaperones bind directly to tau and modulate tau clearance and aggregation.

View Article and Find Full Text PDF

Phosphatase and tensin homolog is a lipid phosphatase that serves as the major negative regulator of the PI3K/AKT pathway. It catalyzes the 3'-specific dephosphorylation of phosphatidylinositol (3,4,5)-trisphosphate (PIP) to generate PIP. PTEN's lipid phosphatase function depends on several domains, including an N-terminal segment spanning the first 24 amino acids, which results in a catalytically impaired enzyme when mutated.

View Article and Find Full Text PDF

Tauopathies, such as Alzheimer's disease, are characterized by the misfolding and progressive accumulation of the microtubule associated protein tau. Chaperones, tasked with maintaining protein homeostasis, can become imbalanced with age and contribute to the progression of neurodegenerative disease. Cyclophilins are a promising pool of underinvestigated chaperones with peptidyl-prolyl isomerase activity that may play protective roles in regulating tau aggregation.

View Article and Find Full Text PDF

Tau accumulation and progressive loss of neurons are associated with Alzheimer's disease (AD). Aggregation of tau has been associated with endoplasmic reticulum (ER) stress and the activation of the unfolded protein response (UPR). While ER stress and the UPR have been linked to AD, the contribution of these pathways to tau-mediated neuronal death is still unknown.

View Article and Find Full Text PDF

The microtubule-associated protein tau pathologically accumulates and aggregates in Alzheimer's disease (AD) and other tauopathies, leading to cognitive dysfunction and neuronal loss. Molecular chaperones, like small heat-shock proteins (sHsps), can help deter the accumulation of misfolded proteins, such as tau. Here, we tested the hypothesis that the overexpression of wild-type Hsp22 (wtHsp22) and its phosphomimetic (S24,57D) Hsp22 mutant (mtHsp22) could slow tau accumulation and preserve memory in a murine model of tauopathy, rTg4510.

View Article and Find Full Text PDF

The hypothalamus-pituitary-adrenal (HPA) axis directly controls the stress response. Dysregulation of this neuroendocrine system is a common feature among psychiatric disorders. Steroid hormone receptors, like glucocorticoid receptor (GR), function as transcription factors of a diverse set of genes upon activation.

View Article and Find Full Text PDF

Agmatine N-acetyltransferase (AgmNAT) catalyzes the formation of N-acetylagmatine from acetyl-CoA and agmatine. Herein, we provide evidence that Drosophila melanogaster AgmNAT (CG15766) catalyzes the formation of N-acetylagmatine using an ordered sequential mechanism; acetyl-CoA binds prior to agmatine to generate an AgmNAT•acetyl-CoA•agmatine ternary complex prior to catalysis. Additionally, we solved a crystal structure for the apo form of AgmNAT with an atomic resolution of 2.

View Article and Find Full Text PDF

Tau accumulation remains one of the closest correlates of neuronal loss in Alzheimer's disease. In addition, tau associates with several other neurodegenerative diseases, collectively known as tauopathies, in which clinical phenotypes manifest as cognitive impairment, behavioral disturbances, and motor impairment. Polyamines act as bivalent regulators of cellular function and are involved in numerous biological processes.

View Article and Find Full Text PDF

Arylalkylamine N-acyltransferase like 2 (AANATL2) catalyzes the formation of N-acylarylalkylamides from the corresponding acyl-CoA and arylalkylamine. The N-acylation of biogenic amines in Drosophila melanogaster is a critical step for the inactivation of neurotransmitters, cuticle sclerotization, and melatonin biosynthesis. In addition, D.

View Article and Find Full Text PDF

Arylalkylamine N-acetyltransferase like 7 (AANATL7) catalyzes the formation of N-acetylarylalkylamides and N-acetylhistamine from acetyl-CoA and the corresponding amine substrate. AANATL7 is a member of the GNAT superfamily of >10000 GCN5-related N-acetyltransferases, many members being linked to important roles in both human metabolism and disease. Drosophila melanogaster utilizes the N-acetylation of biogenic amines for the inactivation of neurotransmitters, the biosynthesis of melatonin, and the sclerotization of the cuticle.

View Article and Find Full Text PDF

Arylalkylamine N-acetyltransferase (AANAT) catalyzes the penultimate step in the biosynthesis of melatonin and other N-acetylarylalkylamides from the corresponding arylalkylamine and acetyl-CoA. The N-acetylation of arylalkylamines is a critical step in Drosophila melanogaster for the inactivation of the bioactive amines and the sclerotization of the cuticle. Two AANAT variants (AANATA and AANATB) have been identified in D.

View Article and Find Full Text PDF

Glycine N-acyltransferase (GLYAT) is a phase II metabolic detoxification enzyme for exogenous (xenobiotic) and endogenous carboxylic acids; consisting of fatty acids, benzoic acid, and salicylic acid. GLYAT catalyzes the formation of hippurate (N-benzoylglycine) from the corresponding glycine and benzoyl-CoA. Herein, we report the successful expression, purification, and characterization of recombinant mouse GLYAT (mGLYAT).

View Article and Find Full Text PDF