Publications by authors named "Santiago Manrique-Bedoya"

We present an interactive COMSOL web application that allows both expert and non-expert users to numerically evaluate the electric potential, ionic concentration distribution, velocity profile, and ionic current along a molecular structure surface characterizing actin filaments. This online computational and visualization tool runs on a high performance server (http://marucholab.physics.

View Article and Find Full Text PDF

An accurate characterization of the polyelectrolyte properties of actin filaments might provide a deeper understanding of the fundamental mechanisms governing the intracellular ionic wave packet propagation in neurons. Infinitely long cylindrical models for actin filaments and approximate electrochemical theories for the electrolyte solutions were recently used to characterize these properties in and intracellular conditions. This article uses a molecular structure model for actin filaments to investigate the impact of roughness and finite size on the mean electrical potential, ionic density distributions, currents, and conductivities.

View Article and Find Full Text PDF

Background: Photothermal therapies have shown promise for treating pancreatic ductal adenocarcinoma when they can be applied selectively, but off-target heating can frustrate treatment outcomes. Improved strategies leveraging selective binding and localized heating are possible with precision medical approaches such as functionalized gold nanoparticles, but careful control of optical dosage and thermal generation would be imperative. However, the literature review revealed many groups assume liver properties for pancreas tissue or rely on insufficiently rigorous characterization studies.

View Article and Find Full Text PDF

Plasmonic photothermal therapy (PPTT) has potential as a superior treatment method for pancreatic cancer, a disease with high mortality partially attributable to the currently non-selective treatment options. PPTT utilizes gold nanoparticles infused into a targeted tissue volume and exposed to a specific light wavelength to induce selective hyperthermia. The current study focuses on developing this approach within an ex vivo porcine pancreas model via an innovative fiberoptic microneedle device (FMD) for co-delivering light and gold nanoparticles.

View Article and Find Full Text PDF

Induced hyperthermia has been demonstrated as an effective oncological treatment due to the reduced heat tolerance of most malignant tissues; however, most techniques for heat generation within a target volume are insufficiently selective, inducing heating and unintended damage to surrounding healthy tissues. Plasmonic photothermal therapy (PPTT) utilizes light in the near-infrared (NIR) region to induce highly localized heating in gold nanoparticles, acting as exogenous chromophores, while minimizing heat generation in nearby tissues. However, optimization of treatment parameters requires extensive and studies for each new type of pathology and tissue targeted for treatment, a process that can be substantially reduced by implementing computational modeling.

View Article and Find Full Text PDF