Publications by authors named "Santiago G Solazzi"

Patchy saturation is a term used in the seismic prospecting literature to describe the state of a geological formation in which two immiscible pore fluids prevail in mesoscopic-scale clusters. If the pore fluids have contrasting compressibilities, wave-induced fluid pressure diffusion (FPD) processes may induce significant attenuation and velocity dispersion on seismic waves. Biot's monophasic poroelasticity theory is widely used to model the seismic response of rocks containing binary patches of two immiscible pore fluids.

View Article and Find Full Text PDF

Mechanical waves, which are commonly employed for the noninvasive characterization of fluid-saturated porous media, tend to induce pore-scale fluid pressure gradients. The corresponding fluid pressure relaxation process is commonly referred to as squirt flow and the associated viscous dissipation can significantly affect the waves' amplitudes and velocities. This, in turn, implies that corresponding measurements contain key information about flow-related properties of the probed medium.

View Article and Find Full Text PDF