Publications by authors named "Santiago Faraj"

The introduction of potassium-competitive acid blockers (P-CABs) has been a major innovation in gastric H,K-ATPase inhibition and many laboratories are actively engaged in the development of novel molecules within this class. This work investigates the interaction between H,K-ATPase and tegoprazan, a representative of the P-CABs group, in terms of K and H binding, through functional and structural analyses. First, by studying the H,K-ATPase activity, we found a model to describe the non-Michaelis-Menten kinetics through a "ping-pong" mechanism that explains a stoichiometry of 1 H, 1 K, and 1 ATP molecule, but also considering the influence of H on the ionization states of the protein.

View Article and Find Full Text PDF

Chikungunya virus (CHIKV) is a rapidly spreading re-emergent virus transmitted from mosquitoes to humans. The emergence of epidemic variants has been associated with changes in the viral genome, such as the duplication of repeated sequences in the 3' untranslated region (UTR). Indeed, blocks of repeated sequences seemingly favor RNA recombination, providing the virus with a unique ability to continuously change the 3'UTR architecture during host switching.

View Article and Find Full Text PDF

The Na/K-ATPase is an integral plasma membrane glycoprotein of all animal cells that couples the exchange of intracellular Na for extracellular K to the hydrolysis of ATP. The asymmetric distribution of Na and K is essential for cellular life and constitutes the physical basis of a series of fundamental biological phenomena. The pumping mechanism is explained by the Albers-Post model.

View Article and Find Full Text PDF

Local events that affect specific regions of proteins are of utmost relevance for stability and function. The aim of this study is to quantitatively assess the importance of locally-focused dynamics by means of a simple chemical modification procedure. Taking human Frataxin as a working model, we investigated local fluctuations of the C-terminal region (the last 16 residues of the protein) by means of three L → C replacement mutants: L98C, L200C and L203C.

View Article and Find Full Text PDF

Metal-fluoride complexes have been used to induce E2P-like states with the aim of studying the events that occur during E2P hydrolysis in P-type ATPases. In the present work, we compared the E2P-like state induced by a beryllium fluoride complex (BeF) with the actual E2P state formed through backdoor phosphorylation of the Na,K-ATPase. Formation of E2P and E2P-like states were investigated employing the styryl dye RH421.

View Article and Find Full Text PDF

The aim of this study is to investigate the folding reaction of human frataxin, whose deficiency causes the neurodegenerative disease Friedreich's Ataxia (FRDA). The characterization of different conformational states would provide knowledge about how frataxin can be stabilized without altering its functionality. Wild-type human frataxin and a set of mutants, including two highly destabilized FRDA-associated variants were studied by urea-induced folding/unfolding in a rapid mixing device and followed by circular dichroism.

View Article and Find Full Text PDF

Friedreich's ataxia (FRDA) is linked to a deficiency of frataxin (FXN), a mitochondrial protein involved in iron-sulfur cluster synthesis. FXN is a small protein with an α/β fold followed by the C-terminal region (CTR) with a nonperiodic structure that packs against the protein core. In the present study, we explored the impact of the alteration of the CTR on the stability and dynamics of FXN.

View Article and Find Full Text PDF

The N-terminal stretch of human frataxin (hFXN) intermediate (residues 42-80) is not conserved throughout evolution and, under defined experimental conditions, behaves as a random-coil. Overexpression of hFXN56-210 in Escherichia coli yields a multimer, whereas the mature form of hFXN (hFXN81-210) is monomeric. Thus, cumulative experimental evidence points to the N-terminal moiety as an essential element for the assembly of a high molecular weight oligomer.

View Article and Find Full Text PDF

Adaptation of life to low temperatures influences both protein stability and flexibility. Thus, proteins from psychrophilic organisms are excellent models to study relations between these properties. Here we focused on frataxin from Psychromonas ingrahamii (pFXN), an extreme psychrophilic sea ice bacterium that can grow at temperatures as low as -12°C.

View Article and Find Full Text PDF

Frataxin (FXN) is an α/β protein that plays an essential role in iron homeostasis. Apparently, the function of human FXN (hFXN) depends on the cooperative formation of crucial interactions between helix α1, helix α2, and the C-terminal region (CTR) of the protein. In this work we quantitatively explore these relationships using a purified recombinant fragment hFXN90-195.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiono63k5pbfdfqne486h5fboo0cho0svu49): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once