Publications by authors named "Santiago Fabian Cobos"

Micro-CT imaging can be used as an effective method for non-destructive testing (NDT) of metal 3D printed parts-including titanium biomedical components fabricated using laser powder-bed-fusion (LPBF). Unfortunately, the cost of commercially available micro-CT scanners renders routine NDT for biomedical applications prohibitively expensive. This study describes the design, manufacturing, and implementation of a cost-effective scanner tailored for NDT of medium-size titanium 3D printed biomedical components.

View Article and Find Full Text PDF

Background: Cone-beam computed tomography (CBCT) systems acquire volumetric data more efficiently than fan-beam or multislice CT, particularly when the anatomy of interest resides within the axial field-of-view of the detector and data can be acquired in one rotation. For such systems, scattered radiation remains a source of image quality degradation leading to increased noise, image artifacts, and CT number inaccuracies.

Purpose: Recent advances in metal additive manufacturing allow the production of highly focused antiscatter grids (2D-ASGs) that can be used to reduce scatter intensity, while preserving primary radiation transmission.

View Article and Find Full Text PDF

Industrial microcomputed tomography (micro-CT) scanners are suitable for nondestructive testing (NDT) of metal, 3D-printed medical components. Typically, these scanners are equipped with high-energy sources that require heavy shielding and costly infrastructure to operate safely, making routine NDT of medical components prohibitively expensive. Alternatively, fixed-current, low-cost x-ray units could be implemented to perform CT-based NDT of 3D-printed medical parts in a subset of cases, if there is sufficient x-ray transmission for the CT reconstruction.

View Article and Find Full Text PDF