Publications by authors named "Santiago Coll"

Density functional theory (DFT) calculations combined with surface thermodynamic arguments and the Gibbs-Curie-Wulff equilibrium morphology formalism have been employed to explore the effect of the reaction conditions, temperature (T), and gas-phase partial pressures (PH2 and PH2S) on the stability of nickel sulfide (Ni3S2) surfaces. Furthermore, the strength and nature of chemical bonds for selected Ni3S2 surface cuts were investigated with the quantum theory of atoms in molecules methodology. A particular analysis of the electrostatic potential within this theoretical framework is performed to study the potential activity of nickel sulfide nanoparticles as hydrodesulfurization (HDS) catalysts.

View Article and Find Full Text PDF

The energy of formation and the Lewis acid strength of sulfur vacancies or coordinative unsaturated sites on the MoS2 edges were studied using density functional theory for periodic systems and an electrostatic potential-based methodology. The results suggest that the more energetically favorable sites are located on the sulfur edges; however, their Lewis acid strength is considerably smaller than the site acidity at the molybdenum edges. The acid strength for the reported most hydrodesulfurization active site of RuS2 was also determined.

View Article and Find Full Text PDF