Publications by authors named "Santiago Balseiro-Gomez"

Synapse formation is locally determined by transmembrane proteins, yet synaptic material is synthesized remotely and undergoes processive transport in axons. How local synaptogenic signals intercept synaptic cargo in transport to promote its delivery and synapse formation is unknown. We found that the control of synaptic cargo delivery at microtubule (MT) minus ends mediates pro- and anti-synaptogenic activities of presynaptic neurexin and frizzled in C.

View Article and Find Full Text PDF

Gene duplication generates new functions and traits, enabling evolution. Human-specific duplicated genes in particular are primary sources of innovation during our evolution although they have very few known functions. Here we examine the brain function of one of these genes (CHRFAM7A) and its product (dupα7 subunit).

View Article and Find Full Text PDF

Background/aims: Microglia are the dynamic motile phagocytes of the brain considered the first line of defense against threats or disturbances to the Central Nervous System (CNS). Microglia help orchestrate the immunological response by interacting with others immune cells. Mast cells (MCs) are effector cells of the innate immune system distributed in all organs and vascularized tissues, brain included.

View Article and Find Full Text PDF

Background: Mast cells (MCs) in the brain can respond to environmental cues and relay signals to neurons that may directly influence neuronal electrical activity, calcium signaling, and neurotransmission. MCs also express receptors for neurotransmitters and consequently can be activated by them. Here, we developed a coculture model of peritoneal MCs, incubated together with dissociated hippocampal neurons for the study of cellular mechanisms involved in the mast cell-neuron interactions.

View Article and Find Full Text PDF

Cargo transport to axons and dendrites is essential for maintaining neuronal polarity and function. In this issue of Developmental Cell, Karasmanis et al. (2018) identify a septin-SEPT9-in differentially regulating the motility of two kinesin motors, thereby controlling cargo entry into dendrites.

View Article and Find Full Text PDF

To ensure normal immune function, mast cells employ different pathways to release mediators. Here, we report a thus far unknown capacity of mast cells to recycle and reuse secretory granules after an antigen-evoked degranulation process under physiological conditions; this phenomenon involves the existence of a recycling secretory granule pool that is available for release in a short time scale. Rapid endocytic modes contributed to the recycling of ∼60% of the total secretory granule population, which involved kiss-and-run and cavicapture mechanisms, causing retention of the intragranular matrix.

View Article and Find Full Text PDF

Secretory granules (SGs) of mast cells (MCs) release their contents to mediate many biological events and a variety of inflammatory diseases and have important protective roles in innate host defense and pathological functions in allergic reactions and anaphylaxis. There are two modes of MC degranulation during the release of granule contents to the extracellular environment. Anaphylactic degranulation (AND) after IgE-mediated activation is characterized by a rapid swelling and fusion of MC granules as well as abrupt mediators release.

View Article and Find Full Text PDF

5-hydroxytriptamine (5-HT, serotonin) storage and release in mast cell (MC) secretory granules (SG) are dependent on serglycin proteoglycans (PG). This notion is based on the studies of MC of the connective tissue subtype that predominantly contain PG of the heparin type, whereas intestinal mucosal MC, which contain predominantly chondroitin sulfate, have been poorly explored. In the present study, we addressed the possibility that PG contents may differently affect the storage and release of preformed mediators in these two MC subclasses and explain in part their different functional properties.

View Article and Find Full Text PDF

The key role of mast cells (MC), either in development of inflammatory pathologies or in response to environmental stress, has been widely reported in recent years. Previous studies have described the effects of corticotropin-releasing hormone (CRH), which is released from inflamed tissues by cellular stress signals, on MC degranulation, a process possibly driven by selective secretion of mediators (piecemeal degranulation). In this study, we introduce a novel granular exo-endocytic pathway induced by CRH on peritoneal MC.

View Article and Find Full Text PDF
Article Synopsis
  • Endocytic vesicle formation involves a process where the plasma membrane invaginates, forms a bud, and undergoes fission, creating a connection called the fission pore.
  • Non-muscle myosin II (NM-2) plays a critical role in this fission process, as its inhibition with blebbistatin significantly prolongs the fission pore's duration and prevents vesicle closure during large endocytic events.
  • The study indicates that the ATPase activity of NM-2 is essential for effective membrane scission, particularly during compound endocytosis, as its absence hampers the completion of vesicle formation.
View Article and Find Full Text PDF