This paper presents and studies a new epidemic SIR (Susceptible-Infectious-Recovered) model with susceptible recruitment and eventual joint vaccination efforts for both newborn and susceptible individuals. Furthermore, saturation effects in the infection incidence terms are eventually assumed for both the infectious and the susceptible subpopulations. The vaccination action on newborn individuals is assumed to be applied to a fraction of them while that on the susceptible general population is of linear feedback type reinforced with impulsive vaccination actions (in practice, very strong and massive vaccination controls) at certain time points, based on information on the current levels of the susceptible subpopulation.
View Article and Find Full Text PDFA new discrete susceptible-exposed-infectious-recovered (SEIR) epidemic model is presented subject to a feedback vaccination effort involving two doses. Both vaccination doses, which are subject to a non-necessarily identical effectiveness, are administrated by respecting a certain mutual delay interval, and their immunity effect is registered after a certain delay since the second dose. The delays and the efficacies of the doses are parameters, which can be fixed in the model for each concrete experimentation.
View Article and Find Full Text PDFTwo discrete mathematical SIR models (Susceptible-Infectious-Recovered) are proposed for modelling the propagation of the SARS-CoV-2 (COVID-19) through Spain and Italy. One of the proposed models is delay-free while the other one considers a delay in the propagation of the infection. The objective is to estimate the transmission, also known as infectivity rate, through time taking into account the infection evolution data supplied by the official health care systems in both countries.
View Article and Find Full Text PDF