Li-S batteries are promising alternatives due to their proven increased gravimetric capacity compared to Li-ion batteries. However, their development is hindered by many technical issues, one of the most challenging being the dissolution and shuttle of polysulfide species, which causes irreversible loss of cathode material leading to rapid capacity fading. Among the possible strategies to mitigate this effect, the choice of suitable solvents is easy to implement and has large room for improvement.
View Article and Find Full Text PDFThe Li ion mobility through the porous cathode is a critical aspect in the development of commercial Li-air batteries. The bulk transport properties of lithium salts in organic solvents are not reliable parameters for the design of this type of battery since confinement could significantly modify the transport properties, especially when pore diameters are below 10 nm. In this work, we studied the effect of the carbon mesostructure and surface charge on the diffusion of LiTf and LiTFSI salts dissolved in diglyme, typical electrolytes for lithium-air batteries.
View Article and Find Full Text PDFDespite the considerable potential offered by lithium metal's high capacity for rechargeable batteries, challenges such as dendrite formation and safety concerns persist. As strategies continue to advance in dendrite management, the demand for efficient monitoring tools becomes increasingly pronounced. In this study, we delve into the characterization of dendrites, elucidating the influence of microstructure morphology on the NMR spectrum using a combination of simulations and experiments.
View Article and Find Full Text PDFMagnetic resonance imaging (MRI) has proven to be a powerful tool for the characterization and investigation of in situ chemical reactions. This is more relevant when dealing with complex systems, where the spatial distribution of the species, partition equilibrium, flow patterns, among other factors have a determining effect over mass transport and therefore over the reaction rate. The advantage of MRI is that it provides spatial information in a noninvasive way and does not require any molecular sensor or sample extraction.
View Article and Find Full Text PDF