Publications by authors named "Santiago A Gomez"

The zika virus (ZIKV), transmitted to humans from the bites of Aedes Aegypti and Aedes Albopictus mosquitoes produces Zika fever and neurodegenerative disorders that despite affecting millions of people, most recently in Africa and the Americas, has been declared a neglected tropical disease by the World Health Organization. In this work, atomistic molecular dynamics simulations followed by rigorous analysis of the intermolecular interactions reveal crucial aspects of the initial virus⋯cell molecular recognition and attachment, events that trigger the infectious cycle. Previous experimental studies have shown that Dermatan Sulfate (DS) and Chondroitin Sulfate A (CSA), two glycosaminoglycans which are actually epimers to each other and that are structural constituents of receptors expressed in cell membranes, are the preferred anchorage sites, with a marked preference for DS.

View Article and Find Full Text PDF

Specific S477N, N501Y, K417N, K417T, E484K mutations in the receptor binding domain (RBD) of the spike protein in the wild type SARS-COV-2 virus have resulted, among others, in the following variants: B.1.160 (20A or EU2, first reported in continental Europe), B1.

View Article and Find Full Text PDF

A thorough exploration of the molecular basis for hydrophobicity with a comprehensive set of theoretical tools and an extensive set of organic solvent S/water binary systems is discussed in this work. Without a single exception, regardless of the nature or structure of S, all quantum descriptors of bonding yield stabilizing S⋯water interactions, therefore, there is no evidence of repulsion and thus no reason for etymological hydrophobicity at the molecular level. Our results provide molecular insight behind the exclusion of S molecules by water, customarily invoked to explain phase separation and the formation of interfaces, in favor of a complex interplay between entropic, enthalpic, and dynamic factors.

View Article and Find Full Text PDF

The magnified infectious power of the SARS-CoV-2 virus compared to its precursor SARS-CoV is intimately linked to an enhanced ability in the mutated virus to find available hydrogen-bond sites in the host cells. This characteristic is acquired during virus evolution because of the selective pressure exerted at the molecular level. We pinpoint the specific residue (in the virus) to residue (in the cell) contacts during the initial recognition and binding and show that the virus⋅⋅⋅cell interaction is mainly due to an extensive network of hydrogen bonds and to a large surface of noncovalent interactions.

View Article and Find Full Text PDF