Publications by authors named "Santhoshi P Palandira"

Background: Acute liver injury (ALI) that progresses into acute liver failure (ALF) is a life-threatening condition with an increasing incidence and associated costs. Acetaminophen (N-acetyl-p-aminophenol, APAP) overdosing is among the leading causes of ALI and ALF in the Northern Hemisphere. Brain dysfunction defined as is one of the main diagnostic criteria for ALF.

View Article and Find Full Text PDF

Background: The vagus nerve plays an important role in neuroimmune interactions and in the regulation of inflammation. A major source of efferent vagus nerve fibers that contribute to the regulation of inflammation is the brainstem dorsal motor nucleus of the vagus (DMN), as recently shown using optogenetics. In contrast to optogenetics, electrical neuromodulation has broad therapeutic implications.

View Article and Find Full Text PDF

Background: The noradrenergic innervation of the spleen is implicated in the autonomic control of inflammation and has been the target of neurostimulation therapies for inflammatory diseases. However, there is no real-time marker of its successful activation, which hinders the development of anti-inflammatory neurostimulation therapies and mechanistic studies in anti-inflammatory neural circuits.

Methods: In mice, we performed fast-scan cyclic voltammetry (FSCV) in the spleen during intravenous injections of norepinephrine (NE), and during stimulation of the vagus, splanchnic, or splenic nerves.

View Article and Find Full Text PDF

Background: The vagus nerve plays an important role in neuroimmune interactions and in the regulation of inflammation. A major source of efferent vagus nerve fibers that contribute to the regulation of inflammation is the brainstem dorsal motor nucleus of the vagus (DMN) as recently shown using optogenetics. In contrast to optogenetics, electrical neuromodulation has broad therapeutic implications, but the anti-inflammatory efficacy of electrical DMN stimulation (eDMNS) was not previously investigated.

View Article and Find Full Text PDF

Background: Brain metabolic alterations and neuroinflammation have been reported in several peripheral inflammatory conditions and present significant potential for targeting with new diagnostic approaches and treatments. However, non-invasive evaluation of these alterations remains a challenge.

Methods: Here, we studied the utility of a micro positron emission tomography (microPET) dual tracer ([C]PBR28 - for microglial activation and [F]FDG for energy metabolism) approach to assess brain dysfunction, including neuroinflammation in murine endotoxemia.

View Article and Find Full Text PDF